Skip to main content
Log in

DNS Study of the Optimal Chemical Markers for Heat Release in Syngas Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The purpose of this study is to identify a quantitative marker of the heat release rate (HRR) distribution using experimentally measurable species. Turbulent syngas (CO/H2/air) flames with different equivalence ratios, H2/CO ratios, and turbulence intensities are computed by Direct Numerical Simulations (DNS) in order to obtain an indirect but accurate estimation of heat release profiles. To check the robustness of the estimation, two different kinetic mechanisms have been considered. Based on a direct image analysis of the DNS results, normalized species concentrations combined with exponents are systematically tested in an attempt to reconstruct as accurately as possible the field of heat release rate. A systematic comparison is used to identify the best possible exponents associated with each species combination. Differing from previous studies, the present analysis takes into account the local thickness of the turbulent heat release zone. As a consequence, the obtained optimal species combinations represent not only the position of peak heat release but also local changes in the topology of the reaction zone (thickness, curvature). In the end, the heat release rate of atmospheric syngas flames can, in general, be best approximated using the concentrations of HCO and OH, using \(\overline {c}_{HCO}^{1.5}\times \overline {c}_{OH}^{0.75}\), when considering only species that are measurable by Laser-Induced Fluorescence. Another excellent reconstruction would be \(\overline {c}_{CH_{2}O}^{0.32}\times \overline {c}_{OH}^{0.8}\), for cases where CH2O is preferred to HCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zistl, C., Hilbert, R., Janiga, G., Thévenin, D.: Increasing the efficiency of postprocessing for turbulent reacting flows. Comp. Vis. Sci. 12(8), 383 (2009)

    Article  Google Scholar 

  2. Hubschmid, W., Bombach, R., Inauen, A., Güthe, F., Schenker, S., Tylli, N., Kreutner, W.: Thermoacoustically driven flame motion and heat release variation in a swirl-stabilized gas turbine burner investigated by LIF and chemiluminescence. Exp. Fluids 45(1), 167 (2008)

    Article  Google Scholar 

  3. Zähringer, K., Durox, D., Lacas, F.: Helmholtz behavior and transfer function of an industrial fuel swirl burner used in heating systems. Int. J. Heat Mass Transf. 46, 3539 (2003)

    Article  Google Scholar 

  4. Panoutsos, C., Hardalupas, Y., Taylor, A.: Numerical evaluation of equivalence ratio measurement using OH and CH chemiluminiscence in premixed and non-premixed methane-air flames. Combust. Flame 156, 273 (2009)

    Article  Google Scholar 

  5. Leitgeb, T., Schuller, T., Durox, D., Giuliani, F., Köberl, S., Woisetschläger, J.: Interferometric determination of heat release rate in a pulsated flame. Combust. Flame 160, 589 (2013)

    Article  Google Scholar 

  6. Gazi, A., Vourliotakis, G., Skevis, G., Founti, M.A.: Assessment of chemical markers for heat-release rate correlations in laminar premixed flames. Combust. Sci. Tech. 185, 1482 (2013)

    Article  Google Scholar 

  7. Anikin, N.B., Suntz, R., Bockhorn, H.: Tomographic reconstruction of 2D-OH-chemiluminescence distributions in turbulent diffusion flames. Appl. Phys. B 107, 591 (2012)

    Article  Google Scholar 

  8. Floyd, J., Geipel, P., Kempf, A.: Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame. Combust. Flame 158(2), 376 (2011)

    Article  Google Scholar 

  9. Stöhr, M., Sadanandan, R., Meier, W.: Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc. Combust. Inst. 32(2), 2925 (2009)

    Article  Google Scholar 

  10. Hirsch, C., Wäsle, J., Winkler, A., Sattelmayer, T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31(1), 1435 (2007)

    Article  Google Scholar 

  11. Janus, B., Dreizler, A., Janicka, J.: Experiments on swirl stabilized non-premixed natural gas flames in a model gasturbine combustor. Proc. Combust. Inst. 31(2), 3091 (2007)

    Article  Google Scholar 

  12. Matynia, A., Molet, J., Roche, C., Idir, M., de Persis, S., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame 159, 3300 (2012)

  13. Donbar, J., Driscoll, J., Carter, C.: Reaction zone structure in turbulent nonpremixed jet flames - from CH-OH PLIF images. Combust. Flame 122(1–2), 1 (2000)

    Article  Google Scholar 

  14. Kiefer, J., Li, Z.S., Zetterberg, J., Bai, X.S., Aldén, M.: Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combust. Flame 154(4), 802 (2008)

    Article  Google Scholar 

  15. Najm, H.N., Paul, P.H., Mueller, C.J., Wyckoff, P.S.: On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  16. Paul, P.H., Najm, H.N.: Planar laser-induced fluorescence imaging of flame heat release rate. Proc. Combust. Inst. 27, 43 (1998)

    Article  Google Scholar 

  17. Fayoux, A., Zähringer, K., Gicquel, O., Rolon, J.C.: Experimental and numerical determination of heat release in counterflow premixed laminar flames. Proc. Combust. Inst. 30, 251 (2005)

    Article  Google Scholar 

  18. Ayoola, B.O., Balachandran, R., Kaminski, C.F., Mastorakos, E.: European Combustion Meeting, pp 111/1–111/5. Louvain-la-Neuve, Belgium (2005)

    Google Scholar 

  19. Gordon, R.L., Masri, A.R., Mastorakos, E.: Heat release rate as represented by OH x CH2O and its role in autoignition. Combust. Theory Model 13(4), 645 (2009)

    Article  Google Scholar 

  20. Pfadler, S., Beyrau, F., Leipertz, A.: Flame front detection and characterization using conditioned particle image velocimetry (CPIV). Opt. Expr. 15(23), 15444 (2007)

    Article  Google Scholar 

  21. Röder, M., Dreier, T., Schulz, C.: Simultaneous measurement of localized heat-release with OH/CH2O-LIF imaging and spatially integrated OH chemiluminescence in turbulent swirl flames. Appl. Phys. B 107(3), 611 (2012)

    Article  Google Scholar 

  22. Röder, M., Dreier, T., Schulz, C.: Simultaneous measurement of localized heat-release with OH/CH2O-LIF imaging and spatially integrated OH chemiluminescence in turbulent swirl flames. Proc. Combust. Inst. 34, 3549 (2013)

    Article  Google Scholar 

  23. Böckle, S., Kazenwadel, J., Kunzelmann, T., Shin, D.I., Schulz, C., Wolfrum, J.: Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames. Proc. Combust. Inst. 28, 279 (2000)

    Article  Google Scholar 

  24. Yuan, R., Kariuki, J., Dowlut, A., Balachandran, R., Mastorakos, E.: Reaction zone visualisation in swirling spray n-heptane flames. Proc. Combust. Inst. 35(2), 1649 (2015)

    Article  Google Scholar 

  25. Nikolaou, Z.M., Swaminathan, N.: Heat release rate markers for premixed combustion. Combust. Flame 161, 3073 (2014)

    Article  Google Scholar 

  26. Mulla, I.A., Dowlut, A., Hussain, T., Nikolaou, Z.M., Chakravarthy, S.R., Swaminathan, N., Balachandran, R.: Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom. Combust. Flame 165, 373 (2016)

    Article  Google Scholar 

  27. Gicquel, O., Vervisch, L., Joncquet, G., Labegorre, B., Darabiha, N.: Combustion of residual steel gases: laminar flame analysis and turbulent flamelet modeling. Fuel 82, 983 (2003)

    Article  Google Scholar 

  28. Lieuwen, T., Yang, V., Yetter, R.: Synthesis Gas Combustion: Fundamentals and Applications. CRC Press, Dordrecht (2009)

    Book  Google Scholar 

  29. Goodwin, D.G., Moffat, H.K., Speth, R.L.: Available at http://www.cantera.org (2015)

  30. Abdelsamie, A., Fru, G., Oster, T., Dietzsch, F., Janiga, G., Thévenin, D.: Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries. Comput. Fluids 131, 123 (2016)

    Article  MathSciNet  Google Scholar 

  31. Davis, S., Joshi, A., Wang, H., Egolfopoulos, F.: An optimized kinetic model of H2/CO Combustion. Proc. Combust. Inst. 30, 1283 (2005)

    Article  Google Scholar 

  32. Olm, C., Zsély, I.G., Varga, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame 162, 1793 (2015)

    Article  Google Scholar 

  33. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K.: Available at http://ignis.usc.edu/USC_Mech_II.htm/ (2007)

  34. Shalaby, H., Laverdant, A., Thévenin, D.: Direct numerical simulation of a realistic acoustic wave interacting with a premixed flame. Proc. Combust. Inst. 32, 1473 (2009)

    Article  Google Scholar 

  35. Rutland, C.J., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94(1-2), 41 (1993)

    Article  Google Scholar 

  36. Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley (2011)

Download references

Acknowledgments

The financial support of the International Max Planck Research School Magdeburg for Advanced Methods in Process and Systems Engineering (IMPRS ProEng) for C. Chi is gratefully acknowledged. A. Abdelsamie would like to acknowledge the financial support of the DFG (Deutsche Forschungsgemeinschaft) within the Forschergruppe (Research unit) number 1447. T. Turányi acknowledges the support of Hungarian Scientific Research Fund OTKA grant K84054. The computer resources provided by the Gauss Center for Supercomputing/Leibniz Supercomputing Center Munich are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Janiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, C., Janiga, G., Abdelsamie, A. et al. DNS Study of the Optimal Chemical Markers for Heat Release in Syngas Flames. Flow Turbulence Combust 98, 1117–1132 (2017). https://doi.org/10.1007/s10494-016-9799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9799-1

Keywords

Navigation