Skip to main content
Log in

Examination of an Oscillating Flame in the Turbulent Flow Around a Bluff Body with Large Eddy Simulation Based on the Probability Density Function Method

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present paper describes a Large Eddy Simulation modelling framework for the simulation of oscillating flames in practical flow configurations. The unresolved sub-grid scale motion is modelled using the dynamic Smagorinsky model in combination with the Probability Density Function method. It is shown that the Large Eddy Simulation method is capable of reproducing the characteristic shape of the reaction zone as well as the non-linear evolution of the total heat release rate in a bluff-body stabilised combustor. Commonly used measures for quantifying the variation of the total heat release rate are evaluated and examined in the present flow configuration of a lean-premixed ethylene-air flame. It was found that formaldehyde-based measures do not appropriately reproduce the amplitude and phase of the total heat release rate. A significantly improved correlation was achieved by employing the product of the mass fractions of molecular oxygen (O2) and the ketenyl radical (HCCO) as a means of characterising the variation of the total heat release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S.F., Balachandran, R., Marchione, T., Mastorakos, E.: Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151, 366–385 (2007)

    Article  Google Scholar 

  2. Armitage, C.A., Balachandran, R., Mastorakos, E., Cant, R.S.: Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 146, 419–436 (2006)

    Article  Google Scholar 

  3. Ayache, S., Dawson, J.R., Triantafyllidis, A., Balachandran, R., Mastorakos, E.: Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows. Int. J. Heat Fluid Flow 31, 754–766 (2010)

    Article  Google Scholar 

  4. Ayoola, B.O.: Laser-based measurement of heat release rate and temperature in turbulent premixed flames. Ph.D. thesis Cambridge University (2005)

  5. Balachandran, R.: Experimental investigation of the response of turbulent premixed flames to acoustic oscillations. Ph.D. thesis Cambridge University (2005)

  6. Brock, L.R., Mischler, B., Rohlfing, E.A.: Laser-induced fluorescence spectroscopy of the ketenyl radical. J. Chem. Phys. 107, 665–668 (1997)

    Article  Google Scholar 

  7. Bulat, G., Jones, W.P., Marquis, A.J.: Large Eddy Simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Inst. 34, 3155–3164 (2013)

    Article  Google Scholar 

  8. Carl, S.A., Van Poppel, M., Peeters, J.: Identification of the CH + O 2 → OH(A) + CO reaction as the source of OH(A-X) chemiluminescence in C 2 H 2/O/H/O 2 atomic flames and determination of its absolute rate constant over the range T = 296 to 511 K. J. Phys. Chem. 107, 11001–11007 (2003)

    Article  Google Scholar 

  9. di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for Large-Eddy Simulation. Phys. Fluids 18(025107), 1–11 (2006)

    Google Scholar 

  10. da Silva, C.B.: The behaviour of sub-grid-scale models near the turbulent/non-turbulent interface in jets. Phys. Fluids 21(081702), 1–4 (2009)

    Google Scholar 

  11. da Silva, C.B., Balarac, G., Métais, O.: Transition in high velocity ratio coaxial jets analysed from direct numerical simulations. J. Turbul. 4, 1–18 (2003)

    Article  Google Scholar 

  12. Di Rosa, M.D., Klavuhn, K.G., Hanson, R.K.: LIF spectroscopy of NO and O2 in high-pressure flames. Combust. Sci. Technol. 118, 257–283 (1996)

    Article  Google Scholar 

  13. Gao, F., O’Brien, E.E.: A Large-Eddy Simulation scheme for turbulent reacting flows. Phys. Fluids 5, 1282–1284 (1993)

    Article  MATH  Google Scholar 

  14. Gazi, A., Vourliotakis, G., Skevis, G., Founti, M.A.: Assessment of chemical markers for heat-release rate correlations in laminar premixed flames. Combust. Sci. Technol. 185, 1482–1508 (2013)

    Article  Google Scholar 

  15. Goldman, A., Rahinov, I., Cheskis, S.: Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy. Appl. Phys. B 82, 659–663 (2006)

    Article  Google Scholar 

  16. Haber, L.C., Vandsburger, U.: A global reaction model for OH chemiluminescence applied to a laminar flat-flame burner. Combust. Sci. Technol. 175, 1859–1891 (2003)

    Article  Google Scholar 

  17. Hall, J.M., Rickard, M.J.A., Petersen, E.L.: Comparison of characteristic time diagnostics for ignition and oxidation of fuel/oxidiser mixtures behind reflected shock waves. Combust. Sci. Technol. 177, 455–483 (2005)

    Article  Google Scholar 

  18. Hidaka, Y., Takahashi, S., Kawano, H., Suga, M., Gardiner, W.C. Jr.: Shock-tube measurement of the rate constant for excited OH (A 2Σ+) formation in the hydrogen-oxygen reaction. J. Phys. Chem. 86, 1429–1433 (1982)

    Article  Google Scholar 

  19. Jones, W.P., Prasad, V.N.: Large Eddy Simulation of the Sandia Flame Series (D-F) using the Eulerian stochastic field method. Combust. Flame 157, 1621–1636 (2010)

    Article  Google Scholar 

  20. Sabel’nikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72(016301), 1–22 (2005)

    Google Scholar 

  21. Jones, W.P., Marquis, A.J., Prasad, V.N.: LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame 159, 3079–3095 (2012)

    Article  Google Scholar 

  22. Jones, W.P., Marquis, A.J., Noh, D.: LES of a methanol spray flame with a stochastic sub-grid model. Proc. Combust. Inst. 35, 1685–1691 (2015)

    Article  Google Scholar 

  23. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or Large Eddy Simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  24. Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., Lu, T.: Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated co-flow. Combust. Flame 159, 265–274 (2012)

    Article  Google Scholar 

  25. Matalon, M.: Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163–191 (2007)

    Article  MathSciNet  Google Scholar 

  26. Nikolaou, Z.M., Swaminathan, N.: Heat release rate markers for premixed combustion. Combust. Flame 161, 3073–3084 (2014)

    Article  Google Scholar 

  27. Piomelli, U., Liu, J.: Large-Eddy Simulation of rotating channel flows using a localised dynamic model. Phys. Fluids 7, 839–848 (1995)

    Article  MATH  Google Scholar 

  28. Ruder, H., Ertl, T., Geyer, F., Herold, H., Kraus, U.: Line-of-sight integration: a powerful tool for visualisation of three-dimensional scalar fields. Comput. Graph. 13, 223–228 (1989)

    Article  Google Scholar 

  29. Triantafyllidis, A., Mastorakos, E., Eggels, R.L.G.M.: Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156, 2328–2345 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jurisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, W.P., Jurisch, M. & Marquis, A.J. Examination of an Oscillating Flame in the Turbulent Flow Around a Bluff Body with Large Eddy Simulation Based on the Probability Density Function Method. Flow Turbulence Combust 95, 519–538 (2015). https://doi.org/10.1007/s10494-015-9637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9637-x

Keywords

Navigation