Skip to main content
Log in

LES Modeling of the Impact of Heat Losses and Differential Diffusion on Turbulent Stratified Flame Propagation: Application to the TU Darmstadt Stratified Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Common combustion chambers often exhibit turbulent flames propagating in partially-premixed mixtures. This propagation is generally governed by aerodynamics, unsteady mixing and chemical processes and may also be affected by conductive heat losses when the reactive zone develops close to the burner lips. The Filtered TAbulated Chemistry for Large Eddy Simulation (F-TACLES) model has been recently developed to include tabulated chemistry in Large Eddy Simulation (LES) of adiabatic stratified flames in flamelet regimes. The present article proposes a modeling approach to account for both differential diffusion and non-adiabatic effects on flame consumption speed following the F-TACLES formalism. The adiabatic F-TACLES model is first detailed using a generalized formalism for diffusive fluxes allowing either to account for differential diffusion or not. The F-TACLES model is then extended to non-adiabatic situations. A correction factor based on the non-adiabatic consumption rate is introduced to recover a realistic filtered flame consumption speed. The objective is here to tackle flame stabilization mechanisms when heat losses affect the reaction zone. The proposed approach is validated through the simulation of the unconfined stratified turbulent jet flame TSF-A for which stabilization process is affected by heat losses. Five simulations are performed for both adiabatic and non-adiabatic flow conditions comparing unity Lewis number and complex diffusion assumptions. The adiabatic F-TACLES model predicts a flame anchored at the burner lip disagreeing with experimental data. The non-adiabatic simulation exhibits local extinction due to heat losses near the burner exit. The flame is then lifted improving the comparison with experiments. Results also show a significant impact of molecular diffusion model on both mean flame consumption rate and angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz, A.P.D., Dean, A.M., Grenda, J.M.: Proc. Combust. Ins. 28(2), 1925 (2000)

    Article  Google Scholar 

  2. Poinsot, T., Veynante, D.: Theoretical and numerical Combustion. 3rd edn (2012)

  3. Kang, T., Kyritsis, D.C.: Combust. Sci. Technol. 177(11), 2191 (2005)

    Article  Google Scholar 

  4. Galizzi, C., Escudié, D.: Combust. Flame 145(3), 621 (2006)

    Article  Google Scholar 

  5. Anselmo-Filho, P., Hochgreb, S., Barlow, R., Cant, R.: Proc. Combust. Inst. 32(2), 1763 (2009)

    Article  Google Scholar 

  6. Sweeney, M.S., Hochgreb, S., Barlow, R.S.: Combust. Flame 158(5), 935 (2011)

    Article  Google Scholar 

  7. Böhm, B., Frank, J.H., Dreizler, A.: Proc. Combust. Inst. 33(1), 1583 (2011)

    Article  Google Scholar 

  8. Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: Combust. Flame 159(9), 2896 (2012)

    Article  Google Scholar 

  9. Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: Combust. Flame 159(9), 2912 (2012)

    Article  Google Scholar 

  10. Maas, U., Pope, S.B.: Combust. Flame 88(3–4), 239 (1992)

    Article  Google Scholar 

  11. Gicquel, O., Darabiha, N., Thévenin, D.: Proc. Combust. Inst. 28(2), 1901 (2000)

    Article  Google Scholar 

  12. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Combust. Flame 127(3), 2124 (2001)

    Article  Google Scholar 

  13. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: Combust. Flame 157(3), 465 (2010)

    Article  Google Scholar 

  14. Auzillon, P., Fiorina, B., Vicquelin, R., Darabiha, N., Gicquel, O., Veynante, D.: Proc. Combust. Inst. 33(1), 1331 (2011)

    Article  Google Scholar 

  15. Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: Combust. Flame 159(8), 2704 (2012)

    Article  Google Scholar 

  16. Janus, B., Dreizler, A., Janicka, J.: ASME Conf. Proc. 1, 189 (2004)

    Google Scholar 

  17. Janus, B., Dreizler, A., Janicka, J.: Flow Turbul. Combust. 75, 293 (2005)

    Article  MATH  Google Scholar 

  18. Janus, B., Dreizler, A., Janicka, J.: Proc. Combust. Inst. 31(2), 3091 (2007)

    Article  Google Scholar 

  19. Duwig, C.: Combust. Theory Model 13(2), 251 (2009)

    Article  MATH  Google Scholar 

  20. Kuenne, G., Ketelheun, A., Janicka, J.: Combust. Flame 158(9), 1750 (2011)

    Article  Google Scholar 

  21. Marincola, F.C., Ma, T., Kempf, A.M.: Proc. Combust. Inst. 34(1), 1307 (2013)

    Article  Google Scholar 

  22. Barlow, R.S., Dunn, M.J., Sweeney, M.S., Hochgreb, S.: Combust. Flame 159(8), 2563 (2012)

    Article  Google Scholar 

  23. Dunn, M.J., Barlow, R.S.: Proc. Combust. Inst. 34(1), 1411 (2013)

    Article  Google Scholar 

  24. Aspden, A.J., Day, M.S., Bell, J.B.: J. Fluid Mech. 680, 287 (2011)

    Article  MATH  Google Scholar 

  25. Aspden, A.J., Day, M.S., Bell, J.B.: Proc. Combust. Inst. 33(1), 1473 (2011)

    Article  Google Scholar 

  26. Savre, J., Carlsson, H., Bai, X.S.: Flow Turbul. Combust. 90, 325 (2013)

    Article  Google Scholar 

  27. Fiorina, B., Baron, R., Gicquel, O., Thévenin, D., Carpentier, S., Darabiha, N.: Combust. Theory Model. 7(3), 449 (2003)

    Article  Google Scholar 

  28. Regele, J.D., Knudsen, E., Pitsch, H., Blanquart, G.: Combust. Flame 160(2), 240 (2013)

    Article  Google Scholar 

  29. Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Combust. Flame 157(2), 384 (2010)

    Article  Google Scholar 

  30. Roux, A., Pitsch, H.: Cent. Turbul. Res., 275–288 (2010)

  31. Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Combust. Flame 159(8), 2669 (2012)

    Article  Google Scholar 

  32. Ketelheun, A., Kuenne, G., Janicka, J.: Flow Turbul. Combust. 91(4), 867 (2013)

    Article  Google Scholar 

  33. Trisjono, P., Kleinheinz, K., Pitsch, H., Kang, S.: Flow Turbul. Combust. 92(1–2), 201 (2014)

    Article  Google Scholar 

  34. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular theory of gases and liquids. Wiley, New York (1969)

    Google Scholar 

  35. Lindstedt, P.: 12 month progree, report. Tech. Rep. No. TR-96 009 Brite Euram Program Project BRPR950056 (1997)

  36. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Combust. Flame 140(3), 147 (2005)

    Article  Google Scholar 

  37. Ihme, M., Shunn, L., Zhang, J.: J. Comput. Phys. 231(23), 7715 (2012)

    Article  Google Scholar 

  38. Charlette, F., Meneveau, C., Veynante, D.: Combust. Flame 131(1/2), 159 (2002)

    Article  Google Scholar 

  39. Wang, G., Boileau, M., Veynante, D.: Combust. Flame 158(11), 2199 (2011)

    Article  Google Scholar 

  40. Schmitt, T., Sadiki, A., Fiorina, B., Veynante, D.: Proc. Combust. Inst. 34(1), 1261 (2013)

    Article  Google Scholar 

  41. van Oijen, J.A., de Goey, L.P.H.: Combust. Sci. Technol. 161(1), 113 (2000)

    Article  Google Scholar 

  42. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: A fortran program for modelling steady laminar one-dimensional premixed flames, Tech. rep., Sandia National Laboratories (1992)

  43. Moureau, V., Domingo, P., Vervisch, L.: Comptes Rendus Mécanique 339(2-3), 141 (2011)

    Article  MATH  Google Scholar 

  44. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: Combust. Flame 154(1 - 2), 2 (2008)

    Article  Google Scholar 

  45. Kraushaar, M.: Application of the compressible and low-mach number approaches to large eddy simulation of turbulent flows in aero-engines, Ph.D. thesis, Université de Toulouse (2011)

  46. Nicoud, F., Ducros, F.: Flow Turbul. Combust. 62(3), 183 (1999)

    Article  MATH  Google Scholar 

  47. Pons, L., Darabiha, N., Candel, S., Ribert, G., Yang, V.: Combust. Theory Model. 13(1), 57 (2009)

    Article  MATH  Google Scholar 

  48. Candel, S., Schmitt, T.: N. Darabiha, in 23rd ICDERS, Irvine (2011)

  49. Passot, T., Pouquet, A.: J. Fluid Mech. 181, 441 (1987)

    Article  MATH  Google Scholar 

  50. ANSYS®; Fluent, Theory Guide Release 12.0 (2009)

  51. Veynante, D., Knikker, R.: J. Turbul. 7(35), 1 (2006)

    MathSciNet  Google Scholar 

  52. Smagorinsky, J.: Monthly Weather Review 91(3), 99 (1963)

    Article  Google Scholar 

  53. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: Phys. Fluids 3(7), 1760 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mercier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercier, R., Auzillon, P., Moureau, V. et al. LES Modeling of the Impact of Heat Losses and Differential Diffusion on Turbulent Stratified Flame Propagation: Application to the TU Darmstadt Stratified Flame. Flow Turbulence Combust 93, 349–381 (2014). https://doi.org/10.1007/s10494-014-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9550-8

Keywords

Navigation