Skip to main content
Log in

Reynolds Number Effects on Statistics and Structure of an Isothermal Reacting Turbulent Wall-Jet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Three-dimensional direct numerical simulation (DNS) is used to investigate the effects of changing the Reynolds number on dynamics of a reacting turbulent wall-jet. The flow is compressible and a single-step isothermal global reaction is considered. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. In this study, the bulk Reynolds number of the flow, in terms of the inlet quantities, varies from Re = 2000 to Re = 6000, which results in a comparable change in friction Reynolds numbers. The DNS database in Pouransari et al. (Phys. Fluids 23(085104), 2011) is used for the lower Reynolds number case and for the higher Reynolds number case, a new DNS is performed. One of the main objectives of this study is to compare the influences of changing the Reynolds number of the isothermal flow with the heat-release effects caused by the chemical reaction, that we studied earlier in Pouransari et al. (Int. J. Heat Fluid Flows 40, 65–80, 2013). While, both turbulent and flame structures become finer at the higher Reynolds number, the effect of decreasing the Reynolds number and adding the combustion heat release are compared with each other and found to be similar for some aspects of the flow, but are not always the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlman, D., Velter, G., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of non-isothermal turbulent wall-jets. Phys. Fluids 21(035), 101 (2009)

    Google Scholar 

  2. Bailey, S., Hultmark, M., Monty, J., Alfredsson, P., Chong, M., Duncan, R., Fransson, J.H.M., Hutchins, N., Marusic, I., McKeon, B.J., Nagib, H., Örlü, R., Segalini, A.S., Smits, A.J., Vinuesa, R.: Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using pitot probes. J. Fluid Mech. 715(1), 642–670 (2013)

    Article  MATH  Google Scholar 

  3. Cabot, W.H., Cook, A.W.: Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2, 562–568 (2006)

    Article  Google Scholar 

  4. Chakraborty, N., Swaminathan, N.: Reynolds number effects on scalar dissipation rate transport and its modeling in turbulent premixed combustion. Combust. Sci. Technol. 185(4), 676–709 (2013)

    Article  Google Scholar 

  5. DeGraaff, D.B., Webster, D.R., Eaton, J.K.: The effect of Reynolds number on boundary layer turbulence. Exp. Thermal Fluid Sci. 18(4), 341–346 (1998)

    Article  Google Scholar 

  6. del Álamo, J.C., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15(6), 41–44 (2003)

    Article  Google Scholar 

  7. Den Toonder, J.M.J., Nieuwstadt, F.T.M.: Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids 9, 3398 (1997)

    Article  Google Scholar 

  8. Ferchichi, M., Tavoularis, S.: Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids 12, 2942 (2000)

    Article  Google Scholar 

  9. Fischer, M., Jovanovic, J., Durst, F.: Reynolds number effects in the near-wall region of turbulent channel flows. Phys. Fluids 13(6), 1755–1767 (2001)

    Article  Google Scholar 

  10. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proc. Combust. Inst. 31, 1633–1640 (2007)

    Article  Google Scholar 

  11. Heinz, S., Roekaerts, D.: Reynolds number effects on mixing and reaction in a turbulent pipe flow. Chem. Eng. Sci. 56(10), 3197–3210 (2001)

    Article  Google Scholar 

  12. Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667(1), 1–37 (2011)

    MATH  Google Scholar 

  13. Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20(101), 511 (2008)

    Google Scholar 

  14. Launder, B.E., Rodi, W.: The turbulent wall jet. Prog. Aerosp. Sci. 19, 81–128 (1981)

    Article  Google Scholar 

  15. Peters, N.: Turbulent Combustion. Cambridge Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  16. Pouransari, Z., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of an isothermal reacting turbulent wall-jet. Phys. Fluids 23(085104) (2011)

  17. Pouransari, Z., Johansson, A.V.: Numerical investigation of wall heat transfer in turbulent reacting wall-jets. In: Tavoularis, S. (ed.) Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena. Ottawa (2011)

  18. Pouransari, Z., Vervisch, L., Johansson, A.: Heat release effects on mixing scales of non-premixed turbulent wall-jets: a DNS study. Int. J. Heat Fluid Flows 40, 65–80 (2013)

    Article  Google Scholar 

  19. Rasam, A., Brethouwer, G., Johansson, A.: An explicit algebraic model for the subgridscale passive scalar flux. J Fluid Mech 721, 541–577 (2013)

    Article  MathSciNet  Google Scholar 

  20. Rasam, A., Brethouwer, G., Schlatter P, Li, Q., Johansson, A.: Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow. J. Turbul. 12, N10 (2011). doi:10.1080/14685248.2010.541920

  21. Saikrishnan, N., Angelis, E., Longmire, E.K., Marusic, I., Casciola, C.M., Piva, R.: Reynolds number effects on scale energy balance in wall turbulence. Phys. Fluids 24(015), 101 (2012)

    Google Scholar 

  22. Schumacher, J.: Reynolds number effects on the turbulent mixing of passive scalars. In: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, pp. 85–90. Springer (2008)

  23. Vervisch, L., Poinsot, T.: Direct numerical simulation of non-premixed turbulent flames. Ann. Rev. Fluid Mech. 30, 655–691 (1998)

    Article  MathSciNet  Google Scholar 

  24. Wei, T., Willmarth, W.: Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech. 204, 57–95 (1989)

    Article  Google Scholar 

  25. Yiu, M.W., Zhou, Y., Zhou, T., Cheng, L.: Reynolds number effects on three-dimensional vorticity in a turbulent wake. AIAA J. 42(5), 1009–1016 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Pouransari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouransari, Z., Vervisch, L. & Johansson, A.V. Reynolds Number Effects on Statistics and Structure of an Isothermal Reacting Turbulent Wall-Jet. Flow Turbulence Combust 92, 931–945 (2014). https://doi.org/10.1007/s10494-014-9539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9539-3

Keywords

Navigation