Skip to main content
Log in

A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The composition Probability Density Function (PDF) model is coupled with a Reynolds-averaged k − ε turbulence model and three computationally efficient, yet widely used chemical mechanisms to simulate transient n-heptane spray injection and ignition in a high temperature and high density ambient fluid. Molecular diffusion is modelled by three mixing models, namely the interaction by exchange with the mean (IEM), modified Curl (MC) and Euclidean minimum spanning trees (EMST) models. The liquid phase is modelled by a discrete phase model (DPM). This represents among the first applications of the PDF method in practical diesel engine conditions. A non-reacting case is first considered, with the focus on the ability of the model to capture the spray structure, e.g., vapour penetration and liquid length, fuel mixture fraction and its variance. Reacting cases are then investigated to compare and evaluate the three different chemical mechanisms and the three mixing models. It is concluded that the EMST mixing model in conjunction with a reduced chemical kinetic model (Lu et al., Combust Flame 156(8):1542–1551, 2009) performs the best among the options considered. The sensitivity of the results to the choice of the mixing constant is also studied to understand its effect on the flame ignition and stabilisation. Finally, the PDF model is compared to a well-mixed model that assumes turbulent fluctuations are negligible, which has been widely used in the diesel spray combustion community. Significant structural differences in the modelled flame are revealed comparing the PDF method with the well-mixed model. Quantitatively, the PDF model exhibits excellent agreement with the measurements and shows much better results than the well-mixed model in all ambient O2 and temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dec, J.E.: Advanced compression-ignition engines–understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727–2742 (2009)

    Article  Google Scholar 

  2. Reitz, R.D.: Directions in internal combustion engine research. Combust. Flame 160(1), 1–8 (2013)

    Article  Google Scholar 

  3. Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)

    Article  Google Scholar 

  4. Som, S., Aggarwal, S.K.: Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust. Flame 157(6), 1179–1193 (2010)

    Article  Google Scholar 

  5. D’Errico, G., Ettorre, D., Lucchini, T.: Comparison of combustion and pollutant emission models for DI diesel engines. SAE Paper 2007-24-0045 (2007)

    Google Scholar 

  6. D’Errico, G., Ettorre, D., Lucchini, T.: Simplified and detailed chemistry modeling of constant-volume diesel combustion experiments. SAE Paper 2008-01-0954 (2008)

  7. Lucchini, T., D’Errico, G., Ettorre, D., Ferrari, G.: Numerical investigation of non-reacting and reacting diesel sprays in constant-volume vessels. SAE Paper 2009-01-1971 (2009)

  8. Lucchini, T., D’Errico, G., Ettorre, D.: Numerical investigation of the spray-mesh-turbulence interactions for high-pressure, evaporating sprays at engine conditions. Int. J. Heat Fluid Flow 32, 285–297 (2011)

    Article  Google Scholar 

  9. Vishwanathan, G., Reitz, R.D.: Development of a practical soot modeling approach and its application to low-temperature diesel combustion. Combust. Sci. Technol. 182(8), 1050–1082 (2010)

    Article  Google Scholar 

  10. Pei, Y., Hawkes, E.R., Kook, S.: Modelling n-heptane spray and combustion in conventional and low-temperature diesel engine conditions. In: Proc. Australian Combust. Symp., AU., pp. 90–93 (2011)

  11. Novella, R., García, A., Pastor, J.M., Domenech, V.: The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling. Math. Comput. Model. 54, 1706–1719 (2011)

    Article  Google Scholar 

  12. Vishwanathan, G., Reitz, R.D.: Numerical predictions of diesel flame lift-off length and soot distributions under low temperature combustion conditions. SAE Paper 2008-01-1331 (2008)

  13. Kärrholm, F.P., Tao, F., Nordin, N.: Three-dimensional simulation of diesel spray ignition and flame lift-off using OpenFOAM and KIVA-3V CFD codes. SAE Paper 2008-01-0961 (2008)

  14. Hong, S., Wooldridge, M.S., Im, H.G., Assanis, D.N., Pitsch, H.: Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine. Combust. Flame 143(1), 11–26 (2005)

    Article  Google Scholar 

  15. Senecal, P.K., Pomraning, E., Richards, K.J., Briggs, T.E., Choi, C.Y., McDavid, R.M., Patterson, M.A.: Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE Transact. 112(3), 1331–1351 (2003)

    Google Scholar 

  16. Singh, S., Reitz, R.D., Musculus, M.P.B.: Comparison of the characteristic time (CTC), representative interactive flamelet (RIF), and direct integration with detailed chemistry combustion models against optical diagnostic data for multi-mode combustion in a heavy-duty DI diesel engine. SAE Paper 2006-01-0055 (2006)

  17. D’Errico, G., Ettorre, D., Lucchini, T.: Comparison of combustion and pollutant emission models for DI diesel engines. SAE Paper 2007-24-0045 (2007)

  18. Kong, S.C., Kim, H., Reitz, R.D., Kim, Y.: Comparisons of combustion simulations using a representative interactive flamelet model and direct integration of CFD with detailed chemistry. In: ASME (2005)

  19. Kolade, B., Morel, T., Kong, S.C.: Coupled 1-D/3-D analysis of fuel injection and diesel engine combustion. In: SAE SP, pp. 217–226 (2004)

  20. Liang, L.K., Song, C., Jung, C., Reitz, R.D.: Development of a semi-implicit solver for detailed chemistry in internal combustion engine simulations. J. Eng. Gas Turbine Power 129(3), 702–707 (2007)

    Google Scholar 

  21. Hawkes, E.R.: Model comparisons: n-heptane session. In: Engine Combustion Network Workshop One, USA (2011)

  22. Hawkes, E.R.: ECN2: ignition and lift-off session. In: Engine Combustion Network Workshop Two, Germany (2012)

  23. Venugopal, R., Abraham, J.: A numerical investigation of flame lift-off in diesel jets. Combust. Sci. Technol. 179(12), 2599–2618 (2007)

    Article  Google Scholar 

  24. Bekdemir, C., Rijk, E., Somers, B., de Goey, P.: On the application of the Flamelet Generated Manifold (FGM) approach to the simulation of an igniting diesel spray. SAE Paper 2010-01-0358 (2010)

  25. Bekdemir, C., Somers, L.M.T., de Goey, L.P.H., Tillou, J., Angelberger, C.: Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics. Proc. Combust. Inst. 34, 3067–3074 (2013)

    Article  Google Scholar 

  26. Bolla, M., Wright, Y.M., Boulouchos, K., Borghesi, G., Mastorakos, E.: Soot formation modelling of n-heptane sprays under diesel engine conditions using the conditional moment closure approach. Combust. Sci. Technol. (2012). doi:10.1080/00102202.2012.752362

    MATH  Google Scholar 

  27. Borghesi, G., Mastorakos, E., Devaud, C.B., Bilger, R.W.: Modelling evaporation effects in conditional moment closure for spray autoignition. Combust. Theory Model. 15(5), 725–752 (2011)

    Article  MATH  Google Scholar 

  28. Bottone, F., Kronenburg, A., Gosman, D., Marquis, A.: The numerical simulation of diesel spray combustion with LES-CMC. Flow Turbulence Combust. 89, 651–673 (2012)

    Article  Google Scholar 

  29. Pei, Y., Hawkes, E.R., Kook, S.: Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proc. Combust. Inst. 34, 3039–3047 (2013)

    Article  Google Scholar 

  30. Bhattacharjee, S., Haworth, D.C.: Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combust. Flame (2013, submitted)

  31. Som, S., Senecal, P.K., Pomraning, E.: Comparison of RANS and LES turbulence models against constant volume diesel experiments. In: 24th Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas, San Antonio, TX (2012)

  32. Bajaj, C., Abraham, J., Pickett, L.M.: The role of vaporization in determining transient diesel spray structure. In: 23rd Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas, Ventura, CA, 15–18 May 2011

  33. Abraham, J., Pickett, L.M.: Computed and measured fuel vapor distribution in a diesel spray. At. Sprays 20(3), 241–250 (2010)

    Article  Google Scholar 

  34. Bajaj, C., Ameen, M., Abraham, J.: Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets. Combust. Sci. Technol. 185(3), 454–472 (2012)

    Article  Google Scholar 

  35. Azimov, U., Kawahara, N., Tomita, E., Tsuboi, K.: Evaluation of the flame lift-off length in diesel spray combustion based on flame extinction. Journal of Thermal Sciences and Technology 5(2), 238–251 (2010)

    Article  Google Scholar 

  36. Campbell, J.W., Gosman, A.D., Hardy, G.: Analysis of premix flame and lift-off in diesel spray combustion using multi-dimensional CFD. SAE Paper 2008-01-0968 (2008)

  37. Oefelein, J.C., Dahms, R.N., Lacaze, G., Manin, J.L., Pickett, L.M.: Effects of pressure on the fundamental physics of fuel injection in diesel engines. In: 12th Triennial International Conference on Liquid Atomization and Spray Systems, ICLASS, Heidelberg, Germany, 2–6 September 2012

  38. Lu, T., Law, C.K., Yoo, C.S., Chen, J.H.: Dynamic stiffness removal for direct numerical simulations. Combust. Flame 156(8), 1542–1551 (2009)

    Article  Google Scholar 

  39. Seiser, R., Pitsch, H., Seshadri, K., Pitz, W.J., Gurran, H.J.: Extinction and autoignition of n-heptane in counterflow configuration. Proc. Combust. Inst. 28, 2029–2037 (2000)

    Article  Google Scholar 

  40. Patel, A., Kong, S., Reitz, R.D.: Development and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Paper 2004-01-0558 (2004)

  41. Ra, Y., Reitz, R.D.: A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust. Flame 155(4), 713–738 (2008)

    Article  Google Scholar 

  42. Zeuch, T., Moréac, G., Ahmed, S.S., Mauss, F.: A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction. Combust. Flame 155(4), 651–674 (2008)

    Article  Google Scholar 

  43. Golovitchev, V.I., Nordin, N., Jarnicki, R., Chomiak, J.: 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Paper 2000-01-1891 (2000)

  44. Peters, N., Paczko, G., Seiser, R., Seshadri, K.: Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane. Combust. Flame 128(1), 38–59 (2002)

    Article  Google Scholar 

  45. Liu, S., Hewson, J.C., Chen, J.H., Pitsch, H.: Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame 137, 320–339 (2004)

    Article  Google Scholar 

  46. Subramanian, G., Pires Da Cruz, A., Colin, O., Vervisch, L.: Modeling engine turbulent auto-ignition using tabulated detailed chemistry. SAE Paper 2007-01-0150 (2007)

  47. Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114(1–2), 149–177 (1998)

    Article  Google Scholar 

  48. Bikas, G.: Kinetic mechanisms for hydrocarbon ignition. Ph.D. thesis, University of Aachen, Germany (2001)

  49. Golovitchev, V.I.: Chalmers University of Technology, Gothenburg, Sweden. Available at http://www.tfd.chalmers.se/valeri/MECH.html (2012)

  50. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  51. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman–Rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  52. Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31, 1543–1550 (2007)

    Article  Google Scholar 

  53. Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)

    Article  Google Scholar 

  54. Merci, B., Roekaerts, D., Naud, B.: Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame (Delft Flame III). Combust. Flame 144, 476–493 (2006)

    Article  Google Scholar 

  55. Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142(4), 438–453 (2005)

    Article  Google Scholar 

  56. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  57. Ge, Y., Cleary, M.J., Klimenko, A.Y.: Sparse-Lagrangian FDF simulations of Sandia Flame E with density coupling. Proc. Combust. Inst. 33, 1401–1409 (2011)

    Article  Google Scholar 

  58. Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8(1), 1–22 (2003)

    Article  Google Scholar 

  59. Pickett, L.M., Bruneaux, G.: Engine combustion network. Available at http://www.sandia.gov/ecn/index.php (2012)

  60. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1998)

    Article  Google Scholar 

  61. Kung, E.H., Haworth D.C.: Transported probability density function (tPDF) modeling for direct-injection internal combustion engines. SAE Int. J. Engines 1, 591–606 (2008)

    Google Scholar 

  62. Zhang, Y.Z., Kung, E.H., Haworth, D.C.: A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions. Proc. Combust. Inst. 30, 2763–2771 (2005)

    Article  Google Scholar 

  63. James, S., Anand, M.S., Pope, S.B.: The Lagrangian PDF transport method for simulations of gas turbine combustor flows. AIAA Paper 2002-4017 (2002)

  64. Ge, H.W., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173–185 (2008)

    Article  Google Scholar 

  65. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. Idicheria, C.A., Pickett, L.M.: Effect of EGR on diesel premixed-burn equivalence ratio. SAE Paper 2007-01-0647 (2007)

  67. Higgins, B., Siebers, D.L.: Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence. SAE Paper 2001-01-0918 (2001)

  68. Higgins, B., Siebers, D.L.: Diesel-spray ignition and premixed burn behavior. SAE Paper 2000-01-0940 (2000)

  69. Zeuch, T., Moréac, G., Ahmed, S.S., Mauss, F.: Minor species production from lean premixed combustion and their impact on autoignition of diesel surrogates. Energy Fuels 25(3), 926–936 (2011)

    Article  Google Scholar 

  70. ANSYS: FLUENT 14.0 Theory Guide, p. 680. ANSYS Inc., Canonsburg, USA (2011)

  71. Klimenko, A.Y., Cleary, M.J.: Convergence to a model in sparse-Lagrangian FDF simulations. Flow Turbul. Combust. 85, 567–591 (2010)

    Article  MATH  Google Scholar 

  72. Cao, R.R., Pope, S.B.: Numerical integration of stochastic differential equations: weak second-order mid-point scheme for application in the composition PDF method. J. Comput. Phys. 185(1), 194–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. Villermaux, J., Devillon, J.C.: Represéntation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modéle d’interaction phénoménologique. In: Proc. 2nd Int. Symp. on Chemical Reaction Engineering, ISCRE, New York, pp. 1–13 (1972)

  74. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4(1), 47–66 (1979)

    Article  MATH  Google Scholar 

  75. Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  76. Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 172, 342–371 (1999)

    Article  MathSciNet  Google Scholar 

  77. Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)

    Article  Google Scholar 

  78. Dukowicz, J.K.: A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35, 229–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  79. Clift, G., Weber: Bubbles, Drops, and Particles. Technical Report, Academic Press (1978)

  80. Gosman, A.D., Ioannides, E.: Aspects of computer simulation of liquid-fuelled combustors. J. Energy 7(6), 482–490 (1983)

    Article  Google Scholar 

  81. Ranz, W.E., Marshall, W.R.: Vaporation from drops, part I. Chem. Eng. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  82. Frossling, N.: Evaporation, heat transfer, and velocity distribution in two-dimensional and rotationally symmetrical laminar boundary-layer flow. N.A.C.A AD-B189 168 (1956)

  83. Janicka, J., Peters, N.: Prediction of turbulent jet diffusion flame lift-off using a PDF transport equation. Proc. Combust. Inst. 19, 367–374 (1982)

    Google Scholar 

  84. Reveillon, J., Demoulin, F.X.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31, 2319–2326 (2007)

    Article  Google Scholar 

  85. Reinsch, C.H.: Smoothing by spline functions. Numer. Math. 10(3), 177–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  86. Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glarborg, P., Wang, C., Adigun, O.: CHEMKIN Collection, Release 3.6. Reaction Design, Inc., ISCRE, San Diego (2000)

  87. Mehl, M., Pitz, W.J., Westbrook, C.K., Curran, H.J.: Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33, 193–200 (2011)

    Article  Google Scholar 

  88. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109(1), 198–223 (1997)

    Article  Google Scholar 

  89. Ciezki, H.K., Adomeit, G.: Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433 (1993)

    Article  Google Scholar 

  90. Vandersickel, A., Hartmann, M., Vogels, K., Wright, Y.M., Fikri, M., Starke, R., Schulz, C., Boulouchos, K.: The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling. Fuel 93, 492–501 (2012)

    Article  Google Scholar 

  91. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evatt R. Hawkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Y., Hawkes, E.R. & Kook, S. A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method. Flow Turbulence Combust 91, 249–280 (2013). https://doi.org/10.1007/s10494-013-9454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9454-z

Keywords

Navigation