Skip to main content
Log in

Experimental Analysis of the Turbulent Flow Behavior of a Textured Surface Proposed for Asymmetric Heat Exchangers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this study the Stereoscopic Particle Image Velocimetry (S-PIV) technique was used to analyze the aerodynamic behavior of a textured surface. This textured surface is supposed to cover the inside of the hot wall of asymmetric heat exchangers. A high heat transfer coefficient and a low pressure drop are desired for the studied module receiver. The proposed textured geometry consists of an association of actuators (i.e., vortex generators) and riblets (used as vortex handlers). To determine the flow structure near the walls with good accuracy, an experiment was carried out in a large-scale boundary layer wind tunnel. The post-processing of the velocity fields obtained with the S-PIV technique allows us to obtain indicators of the pressure drop and of the heat transfer coefficient even if the stream is isothermal for these experiments. Nine riblet-actuator couples are studied and compared to the results obtained for an untextured surface. This work points out that the configuration including actuators and riblets of large dimensions is the best performing. This result is qualitatively validated by the analysis of the three components and two-dimensional averaged velocity fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kays, W.M., London, L.: Compact Heat Exchangers, 3rd ed. Hardcover (1984)

  2. Schwarzbözl, P., Schmitz, M., Pitz-Paal, R., Buck, R.: Analysis of solar gas turbine systems with pressurized air receivers (Refos). In: Proceedings of 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies, Zürich, Switzerland (2002)

  3. Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10(3), 181–191 (2006)

    Article  Google Scholar 

  4. IEA: Energy Technology Perspectives – Scenarios & Strategies to 2050 (2008)

  5. Vrinat, M.: Contribution au développement d’un absorbeur surfacique à air pressurise haute température pour centrale solaire à concentration à tour. PhD thesis, University of Perpignan, Odeillo, France (2010)

  6. Daguenet-Frick, X., Toutant, A., Fall, R., Bataille, F., Olalde, G.: Numerical analysis of high temperature pressurized-air solar receiver. In: 15th Solar Paces International Symposium, Berlin (2009)

  7. Daguenet-Frick, X., Toutant, A., Segui, C., Bataille, F., Olalde, G.: Numerical investigation of an original concept of ceramic high temperature pressurized-air solar receiver. In: Proceedings of 16th Solar Paces International Symposium on Concentrated Solar Power and Chemical Energy Technologies, Perpignan, France (2010)

  8. Jacobi, A.M., Shah, R.K.: Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp. Therm. Fluid Sci. 11, 295–309 (1995)

    Article  Google Scholar 

  9. Garimella, S.V., Eibeck, P.A.: Effect of spanwise spacing on the heat transfer from an array of protruding elements in forced convection. Int. J. Heat Mass Transfer 34(9), 2431–2433 (1991)

    Article  Google Scholar 

  10. Lin, J.C.: Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38, 389–420 (2002)

    Article  Google Scholar 

  11. Ashill, P.R., Fulker, J.L., Hackett, K.C.: Studies of flows induced by sub boundary layer vortexgenerator s (SBVGs). In: 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 14–17 Jan 2002

  12. Yao, C.-S., Lin, J.C., Allan, B.G.: Flowfield measurement of device-induced embedded streamwise vortexon a flat plate. In: 1st AIAA Flow Control Conference, St. Louis, MO, 24–27 June 2002

  13. Allan, B.G., Yao, C.-S., Lin, J.C.: Numerical simulation of vortexgenerator vanes and jets. In: 1st AIAA Flow Control Conference, St. Louis, MO, 24–27 June 2002

  14. Viswanath, P.R. Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38(6–7), 571–600 (2002)

    Article  MathSciNet  Google Scholar 

  15. Coustols, E.: Effet des parois rainurées (riblets) sur la structure d’une couche limite turbulente; Effect of grooved surfaces (riblets) on the structure of a turbulent boundary layer. Méc. Ind. 2(5), 421–434 (2001)

    Article  Google Scholar 

  16. El-Samni, O.A., Yoon, H.S., Chun, H.H.: Turbulent flow over thin rectangular riblets. J Mech Sci Technol 19(9), 1801–1810 (2005)

    Article  Google Scholar 

  17. El-Samni, O.A., Chun, H., Yoon, H.S.: Drag reduction of turbulent flow over thin rectangular riblets. Int. J. Eng. Sci. 45(2–8), 436–454 (2007)

    Article  Google Scholar 

  18. Lee, S.J., Lee, S.H.: Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface, vol. 30(2), pp. 153–166. Springer (2001)

  19. Garcia-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Philos. Trans. R. Soc. 369, 1412–1427 (2011)

    Article  Google Scholar 

  20. Salinas Vázquez, M., Vicente Rodríguez, W., Issa, R.: Effects of ridged walls on the heat transfer in a heated square duct. Int. J. Heat Mass Transfer 48(10), 2050–2063 (2005)

    Article  MATH  Google Scholar 

  21. Olalde, G., Flamant, G., Daguenet, X., Toutant, A., Foucaut, J.M., Coudert, S.: Textured modular surface receptor operating at a high temperature. International Patent WO 2011/045301 A2 (2011)

  22. Lessieur, M.: Turbulence in Fluids. Fourth Revised and Enlarged Edition. Springer, The Netherland (2008)

    Google Scholar 

  23. Clauser, F.H.: The turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)

    Article  Google Scholar 

  24. Van Driest, E.R.: On turbulent flow near a wall. J. Aerosp. Sci. 23, 1007–1011 (1956)

    MATH  Google Scholar 

  25. Carlier, J., Stanislas, M.: Experimental study of eddy structures in turbulent boundary layer using PIV. J. Fluid Mech. 535, 143–188 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Adrian, R.J.: Particle imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  27. Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8(12), 1379–1392 (1997)

    Article  Google Scholar 

  28. Foucaut, J., Carlier, J., Stanislas, M.: PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15, 1046–1058 (2004)

    Article  Google Scholar 

  29. Willert, C.: Stereoscopic digital particle image velocimetry for applications in wind tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997)

    Article  Google Scholar 

  30. Soloff, S., Adrian, R.J., Liu, Z.C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454 (1997)

    Article  Google Scholar 

  31. Adrian, R.J.: Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas. Sci. Technol. 8, 1393–1398 (1997)

    Article  Google Scholar 

  32. Willert, C., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)

    Article  Google Scholar 

  33. Coudert, S., et al.: Double large field stereoscopic piv in a high reynolds number turbulent boundary layer. Exp. Fluids 50, 65–73 (2009)

    Google Scholar 

  34. Coudert, S., Schon, J.P.: Back-projection algorithm with misalignement corrections for 2D3C stereoscopic PIV. Meas. Sci. Technol. 12, 1371–1381 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Daguenet-Frick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daguenet-Frick, X., Foucaut, JM., Coudert, S. et al. Experimental Analysis of the Turbulent Flow Behavior of a Textured Surface Proposed for Asymmetric Heat Exchangers. Flow Turbulence Combust 89, 149–169 (2012). https://doi.org/10.1007/s10494-012-9387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9387-y

Keywords

Navigation