Skip to main content
Log in

Gas Flow Measurements by 3D Particle Tracking Velocimetry Using Coloured Tracer Particles

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work describes an original approach for 3D Particle Tracking Velocimetry (3D PTV), applicable also for gaseous flows and based on tracer particles of different colours. On the images acquired by several cameras, tracer particles are handled by colour recognition and 3D localisation. Then, the PTV tracking algorithm rebuilds the trajectories of the tracer particles using a criterion of Minimum Acceleration. Theoretical and numerical calculations are first presented to demonstrate that the employed coloured tracer particles follow in a suitable manner the considered gas flows. The test cases analysed comprise low Reynolds number flows involving a variety of interesting features, in particular boundary layer separation, continuous acceleration and recirculations. The experimental setup and the 3D PTV procedure are then described. All results are analysed in a quantitative manner and demonstrate the performance of the developed measurement strategy in gas flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basset, A.: Treatise on hydrodynamics. Cambridge Deighton Bell & Co., vol. 2, pp. 285–297 (1888)

  2. Bendicks, C., Tarlet, D., Roloff, C., Bordás, R., Wunderlich, B., Michaelis, B., Thévenin, D.: Improved 3-D particle tracking velocimetry with colored particles. In: Journal of Signal and Information Processing, vol 2, Nr. 2, S. pp. 59–71 (2011)

  3. Bordás, R., Bendicks, C., Kuhn, R., Wunderlich, B., Thévenin, D., Michaelis, B.: Coloured tracer particles employed for 3-D PTV in gas flows. In: 13th International Symposium on Flow Visualization—ISFV 13, pp. 093/1–093/12. Nice, France (2008)

  4. Bourgeois, F., Lassalle, J.-C.: An extension of the Munkres algorithm for the assignment problem to rectangular matrices. In: Communications of the ACM 14, Nr. 12, pp. 802–804. ACM, New York (1971)

    Google Scholar 

  5. Boussinesq, J.: Théorie Analytique De La Chaleur, Mise en Harmonie Avec La Thermodynamique Et Avec La Théorie Mécanique De La Lumière, vol. 2. Ed. Gauthier-Villars, Paris (1903)

    Google Scholar 

  6. Cao, Y.: Munkres’ assignment algorithm, modified for rectangular matrices. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html (2008)

  7. Crocker, J., Grier, D.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  8. Crowe, C., Sommerfeld, M., Tsujinaka, Y.: Multiphase Flows with Droplets and Particles. CRC Press (1998)

  9. Doh, D., Kim, D., Choi, S., Hong, S., Saga, T., Kobayashi, T.: Single-frame (two-field image) 3-D PTV for high speed flows. Exp. Fluids 29, 85–98 (2000)

    Article  Google Scholar 

  10. Economikos, L., Shoemaker, C., Russ, K., Brodkey, R., Jones, D.: Toward full-field measurements of instantaneous visualizations of coherent structures in turbulent shear flows. Exp. Therm. Fluid Sci. 30, 74 (1990)

    Article  Google Scholar 

  11. Engelmann, D.: 3-D Flow measurement by stereo imaging. Ph.D. thesis, Rupertus Carola University of Heidelberg, Germany (2000)

  12. Ge, Y., Cha, S.: Application of neural networks to spectroscopic imaging velocimetry. AIAA J. 38, 487–492 (2000)

    Article  Google Scholar 

  13. Guezennec, Y., Brodkey, R., Trigui, N., Kent, J.: Algorithm for fully-automated three-dimensional particle tracking velocimetry. Exp. Fluids 17, 209–219 (1994)

    Article  Google Scholar 

  14. Hinze, J.: Turbulence. McGraw-Hill Book Company (1975)

  15. Hjelmfelt, A., Mockros, L.: Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16, 149–161 (1966)

    Article  Google Scholar 

  16. Kasagi, N., Matsunaga, A.: Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Int. J. Heat Fluid Flow 16(6), 477–485 (1995)

    Article  Google Scholar 

  17. Kasagi, N., Nishino, K.: Probing turbulence with three-dimensional particle-tracking velocimety. Exp. Therm. Fluid Sci. 4, 601–612 (1991)

    Article  Google Scholar 

  18. Kitzhofer, J., Brücker, C.: Tomographic particle tracking velocimetry using telecentric imaging. Exp. Fluids 49, 1307–1324 (2010)

    Article  Google Scholar 

  19. Kuhn, R., Bordás, R., Wunderlich, B., Michaelis, B., Thévenin, D.: Colour class identification of tracers using artificial neural networks. In: 10th International Conference on Engineering Applications of Neural Networks, pp. 387–394. Thessaloniki, Greece (2007)

    Google Scholar 

  20. Kussin, J.: Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten. Martin-Luther-Universität Halle-Wittenberg, Germany (2004)

    Google Scholar 

  21. Lehwald, A., Thévenin, D., Zähringer, K.: Quantifying macro-mixing and micro-mixing in a static mixer using two-tracer laser-induced fluorescence. Exp. Fluids 48, 823–836 (2010)

    Article  Google Scholar 

  22. Lobutova, E., Resagk, C., Rank, R., Müller, D., Putze, T., Maas, H.G.: 3-D particle tracking velocimetry zur untersuchung von gross-skaligen strukturen in Rayleigh–Bénard Konvektion. In: Fachtagung “Lasermethoden in der Strömungsmesstechnik”, vol. 37, pp.1–7 (2007)

  23. Lüthi, B.: Some aspects of strain, vorticity and material element dynamics as measured with 3D particle tracking velocimetry in a turbulent flow. Ph.D. thesis, Swiss Federal Institute of Technology of Zürich (2002)

  24. Lüthi, B., Ott, S., Berg, J., Mann, J.: Lagrangian multi-particle statistics. J. Turbul. 8, Nr. 45, 1–17 (2007)

    Article  Google Scholar 

  25. Maas, H.-G.: Complexity analysis for the determination of image correspondences in dense spatial target fields. International Archives on Photogrammetry and Remote Sensing XXIX, pp. 102–107 (1992)

  26. Maas, H.-G.: Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Ph.D. thesis, ETH Zürich, Inst. für Geodäsie und Photogrammetrie (1992)

  27. Maas, H.-G., Grün, A.: Digital photogrammetric techniques for high-resolution 3-D flow velocity measurements. Opt. Eng. 34, 1970–1976 (1995)

    Article  Google Scholar 

  28. Maas, H.-G., Grün, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2) 133–146 (1993)

    Article  Google Scholar 

  29. Malik, H., Dracos, T., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. II : Particle Tracking. Exp. Fluids 15, 279–294 (1993)

    Article  Google Scholar 

  30. Matsubara, K., Suto, H., Miura, T., Sakurai, A.: Three-dimensional structures of non-isothermal jet. In: ICHMT 2009 – 6th International Symposium on Turbulence, Heat and Mass Transfer, pp. 111–115 (2009)

  31. Maxey, M., Riley, J.: Equation of motion for a small rigid sphere in a= nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  32. Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8, 1406–1416 (1997)

    Article  Google Scholar 

  33. Murai, Y., Nakada, T., Suzuki, T., Yamamoto, F.: Vorticity and passive-scalar dynamics in two-dimensional turbulence. Meas. Sci. Technol. 18, 2491–2503 (2007)

    Article  Google Scholar 

  34. Netzsch, T., Jähne, B.: Ein schnelles Verfahren zur Lösung des Stereokorrespondenzproblems bei der 3D-Particle Tracking Velocimetry. In: Mustererkennung 1993, Mustererkennung im Dienste der Gesundheit, 15. DAGM-Symposium, pp. 43–50 (1993)

  35. Nishino, K., Kasagi, N., Hirata, M.: Three-dimensional Particle Tracking Velocimetry based on automated digital image processing. J. Fluids Eng. 111, 384–391 (1989)

    Article  Google Scholar 

  36. Oseen, C.: Hydrodynamik. Akad. Verlagsgesellschaft m.b.H. (1927)

  37. Ouelette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40, 301–313 (2006)

    Article  Google Scholar 

  38. Papantoniou, D., Dracos, Th.: Analyzing 3-D turbulent motions in open channel flow by use of stereoscopy and particle tracking. In: Advances In Turbulence, vol. 2, pp. 278–285. Springer-Verlag (1990)

  39. Papantoniou, D., Maas, H.G.: Recent advances in 3-D particle tracking velocimetry. In: Proceedings of the 5th International Symposium on the Application of Laser Techniques in Fluid Mechanics. Lisbon (1990)

  40. Ponchaut, N., Mouton, C., Hornung, H., Dabiri, D.: 3D particle tracking velocimetry method: advances and error analysis. GALCIT report FM2005.04 (2005)

  41. Pratsinis, S., Srinivas, V.: Particle formation in gases. Powder Technol. 88, 267–273 (1996)

    Article  Google Scholar 

  42. Roloff, C., Bendicks, C., Michaelis, B., Tarlet, D., Thévenin, D., Zähringer, K., Wunderlich, B.: 3D-PTV in gas flows using fluorescent micro-particles. In: 14th International Symposium on Flow Visualization—ISFV 14, pp. 032/1–032/11. Daegu, Korea (2010)

  43. Ruck, B., Makiola, B.: Einfluss der Teilchengrösse auf die signalinformation in der Laser-Doppler-Anemometrie. Tech. Mess. 57, 284–295 (1990)

    Google Scholar 

  44. Stüer, H., Blaser, S.: Interpolation of scattered 3D PTV data to a regular grid. Flow Turbul. Combust. 64, 215–232 (2000)

    Article  MATH  Google Scholar 

  45. Suzuki, Y., Kasagi, N.: Turbulent air-flow measurement with the aid of 3-D particle tracking velocimetry in a curved square bend. Flow, Turbulence and Combustion 63, 1–4 (2000)

    Article  Google Scholar 

  46. Veenman, C., Reinders, M., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intel. 23, 54–72 (2001)

    Article  Google Scholar 

  47. Voth, G., La Porta, A., Crawford, A., Alexander, A., Bodenschatz, E.: Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160 (2002)

    Article  MATH  Google Scholar 

  48. Xu, H.: Tracking Lagrangian trajectories in position-velocity space. Meas. Sci. Technol. 19(7), 075,105 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Roloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarlet, D., Bendicks, C., Roloff, C. et al. Gas Flow Measurements by 3D Particle Tracking Velocimetry Using Coloured Tracer Particles. Flow Turbulence Combust 88, 343–365 (2012). https://doi.org/10.1007/s10494-011-9361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9361-0

Keywords

Navigation