Skip to main content
Log in

Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the approaching flow to separate and form a dynamically rich horseshoe vortex system (HSV) in the junction of the obstacle with the wall. The Reynolds number of the flow (Re) is one of the important parameters that control the rich coherent dynamics of the vortex, which are known to give rise to low-frequency, bimodal fluctuations of the velocity field (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). We carry out detached eddy simulations (DES) of the flow past a circular cylinder mounted on a rectangular channel for Re = 2.0 × 104 and 3.9 × 104 (Dargahi, Exp Fluids 8:1–12, 1989) in order to systematically investigate the effect of the Reynolds number on the HSV dynamics. The computed results are compared with each other and with previous experimental and computational results for a related junction flow at a much higher Reynolds number (Re = 1.15 × 105) (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). The computed results reveal significant variations with Re in terms of the mean-flow quantities, turbulence statistics, and the coherent dynamics of the turbulent HSV. For Re = 2.0 × 104 the HSV system consists of a large number of necklace-type vortices that are shed periodically at higher frequencies than those observed in the Re = 3.9 × 104 case. For this latter case the number of large-scale vortical structures that comprise the instantaneous HSV system is reduced significantly and the flow dynamics becomes quasi-periodic. For both cases, we show that the instantaneous flowfields are dominated by eruptions of wall-generated vorticity associated with the growth of hairpin vortices that wrap around and disorganize the primary HSV system. The intensity and frequency of these eruptions, however, appears to diminish rapidly with decreasing Re. In the high Re case the HSV system consists of a single, highly energetic, large-scale necklace vortex that is aperiodically disorganized by the growth of the hairpin mode. Regardless of the Re, we find pockets in the junction region within which the histograms of velocity fluctuations are bimodal as has also been observed in several previous experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agui, J.H., Andreopoulos, J.: Experimental investigation of a three dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder. J. Fluids Eng. 114, 566–576 (1992)

    Article  Google Scholar 

  2. Allen, J.J., Naitoh, T.: Scaling and instability of a junction vortex. J. Fluid Mech. 574, 1–23 (2007)

    Article  MATH  Google Scholar 

  3. Apsley, D.D., Leschziner, M.A.: Investigation of advanced turbulence models for the flow in a generic wing-body junction. Flow Turbul. Combust. 67, 25–55 (2001)

    Article  MATH  Google Scholar 

  4. Baker, C.J.: The turbulent horseshoe vortex. J. Wind Eng. Ind. Aerodyn. 6, 9–23 (1980)

    Article  Google Scholar 

  5. Chen, H.C.: Assessment of a Reynolds stress closure model for appendage hull junction flows. J. Fluids Eng. 117, 557–563 (1995)

    Article  Google Scholar 

  6. Chrisohoides, A., Sotiropoulos, F., Sturm, T.W.: Coherent structures in flat-bed abutment flow: computational fluid dynamics simulations and experiments. J. Hydraul. Eng. 129, 177–186 (2003)

    Article  Google Scholar 

  7. Dargahi, B.: The turbulent flow field around a circular cylinder. Exp. Fluids 8, 1–12 (1989)

    Article  Google Scholar 

  8. Devenport, W.J., Simpson, R.L.: Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech. 210, 23–55 (1990)

    Article  Google Scholar 

  9. Doligalski, T.L., Smith, C.R., Walker, J.D.A.: Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573–616 (1994)

    Article  MathSciNet  Google Scholar 

  10. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. In: Proceedings of the Summer Program. Center for Turbulence Research, pp. 193–208. NASA Ames/Stanford University (1988)

  11. Hussein, H., Martinuzzi, R.: Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys. Fluids 8, 764–780 (1996)

    Article  Google Scholar 

  12. Kalitzin, G., Medic, G., Iaccarino, G., Durbin, P.: Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 204, 265–291 (2005)

    Article  MATH  Google Scholar 

  13. Kirkil, G., Constantinescu, S.G., Ettema, R.: Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Eng. 134, 572–587 (2008)

    Article  Google Scholar 

  14. Krajnović, S., Davidson, L.: Large-eddy simulation of the flow around a bluff body. AIAA J. 40, 927–936 (2002)

    Article  Google Scholar 

  15. Martinuzzi, R., Tropea, C.: The flow around surface-mounted, prismatic obstacles placed in a fully developed channel J. Fluids Eng. 115, 85–92 (1993)

    Article  Google Scholar 

  16. Paik, J., Sotiropoulos, F.: Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel. Phys. Fluids 17, 115104 (2005)

    Article  Google Scholar 

  17. Paik, J., Sotiropoulos, F., Sale, M.J.: Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models. J. Hydraul. Eng. 131, 441–456 (2005)

    Article  Google Scholar 

  18. Paik, J., Escauriaza, C., Sotiropoulos, F.: On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys. Fluids 19, 045107 (2007)

    Article  Google Scholar 

  19. Rodi, W.: Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Eng. Ind. Aerodyn. 69–71, 55–75 (1997)

    Article  Google Scholar 

  20. Rodi, W., Ferziger, J., Breuer, M., Pourquié, M.: Status of large eddy simulation: results of a workshop. J. Fluids Eng. 119, 248–262 (1997)

    Article  Google Scholar 

  21. Roulund, A., Sumer, B.M., Fredsøe, J., Michelsen, J.: Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Seal, C.V., Smith, C.R., Rockwell, D.: Dynamics of the vorticity distribution in endwall junctions. AIAA J. 35, 1041–1047 (1997)

    Article  Google Scholar 

  23. Seal, C.V., Smith, C.R.: Visualization of a mechanism for three-dimensional interaction and near-wall eruption. J. Fluid Mech. 394, 193–203 (1999)

    Article  MATH  Google Scholar 

  24. Shur, M., Spalart, P.R., Strelets, M., Travin, A.: Detached-eddy simulation of an airfoil at high angle of attack. In: Rodi, W., Laurence, D. (eds.) Turbulent Shear Flows, pp. 669–678. Elsevier, Amsterdam (1999)

    Google Scholar 

  25. Simpson, R.L.: Junction flows. Annu. Rev. Fluid Mech. 33, 415–443 (2001)

    Article  Google Scholar 

  26. Sotiropoulos, F., Abdallah, S.: The discrete continuity equation in primitive variable solutions of incompressible flow. J. Comput. Phys. 95, 212–227 (1991)

    Article  MATH  Google Scholar 

  27. Sotiropoulos, F., Constantinescu, G.: Pressure-based residual smoothing operators for multistage pseudocompressibility algorithms. J. Comput. Phys. 133, 129–145 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 5–21 (1994)

    Google Scholar 

  29. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES. Greyden Press, Columbus (1997)

    Google Scholar 

  30. Tang, H.S., Jones, S.C., Sotiropoulos, F.: An overset grid method for 3D unsteady incompressible flows. J. Comput. Phys. 191, 567–600 (2003)

    Article  MATH  Google Scholar 

  31. Tseng, M., Yen, C., Song, C.C.S.: Computation of three-dimensional flow around square and circular piers. Int. J. Numer. Methods Fluids 34, 207–227 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotis Sotiropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escauriaza, C., Sotiropoulos, F. Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow Turbulence Combust 86, 231–262 (2011). https://doi.org/10.1007/s10494-010-9315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9315-y

Keywords

Navigation