Skip to main content
Log in

Effect of Particle Clusters on Carrier Flow Turbulence: A Direct Numerical Simulation Study

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Experiments indicate that particle clusters that form in fluidized–bed risers can enhance gas-phase velocity fluctuations. Direct numerical simulations (DNS) of turbulent flow past uniform and clustered configurations of fixed particle assemblies at the same solid volume fraction are performed to gain insight into particle clustering effects on gas-phase turbulence, and to guide model development. The DNS approach is based on a discrete-time, direct-forcing immersed boundary method (IBM) that imposes no-slip and no-penetration boundary conditions on each particle’s surface. Results are reported for mean flow Reynolds number Re p  = 50 and the ratio of the particle diameter d p to Kolmogorov scale is 5.5. The DNS confirm experimental observations that the clustered configurations enhance the level of fluid-phase turbulent kinetic energy (TKE) more than the uniform configurations, and this increase is found to arise from a lower dissipation rate in the clustered particle configuration. The simulations also reveal that the particle-fluid interaction results in significantly anisotropic fluid-phase turbulence, the source of which is traced to the anisotropic nature of the interphase TKE transfer and dissipation tensors. This study indicates that when particles are larger than the Kolmogorov scale (d p  > η), modeling the fluid-phase TKE alone may not be adequate to capture the underlying physics in multiphase turbulence because the Reynolds stress is anisotropic. It also shows that multiphase turbulence models should consider the effect of particle clustering in the dissipation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, G., Ma, D.: A thermodynamical formulation for dispersed multiphase turbulent flows: I. Basic theory. Int. J. Multiph. Flow 16(2), 323–340 (1990)

    Article  MATH  Google Scholar 

  2. Ahmadi, G., Ma, D.: A thermodynamical formulation for dispersed multiphase turbulent flows: II. Simple shear flows for dense mixtures. Int. J. Multiph. Flow 16(2), 341–351 (1990)

    Article  MATH  Google Scholar 

  3. Apte, S.V., Martin, M., Patankar, N.A.: A numerical method for fully resolved simulation (FRS) of rigid particle flow interactions in complex flows. J. Comput. Phys. 228, 2712–2738 (2009)

    Article  MATH  Google Scholar 

  4. Bagchi, P., Balachandar, S.: Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15(11), 3496–3513 (2003)

    Article  Google Scholar 

  5. Bagchi, P., Balachandar, S.: Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95–123 (2004)

    Article  MATH  Google Scholar 

  6. Balzer, G., Boelle, A., Simonin, O.: Eulerian gas–solid flow modelling of dense fluidized bed. In: Fluidization VIII. International Symposium of Engineering Foundation, pp. 1125–1134 (1998)

  7. Bhusarapu, S., Al Dahhan, M.H., Duduković, M.P.: Solids flow mapping in a gas–solid riser: mean holdup and velocity fields. Powder Technol. 163(1–2), 98–123 (2006)

    Article  Google Scholar 

  8. Bolio, E., Yasuna, J., Sinclair, J.: Dilute turbulent gas-solid flow in risers with particle-particle interactions. AIChE J. 41(5), 1375–1388 (1995)

    Article  Google Scholar 

  9. Bolio, E.J., Sinclair, J.L.: Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes. Int. J. Multiph. Flow 21(6), 985–1001 (1995)

    Article  MATH  Google Scholar 

  10. Brereton, C.M.H., Grace, J.R.: Microstructural aspects of the behavior of circulating fluidized-beds. Chem. Eng. Sci. 48(14), 2565–2572 (1993)

    Article  Google Scholar 

  11. Burton, T.M., Eaton, J.K.: Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67–111 (2005)

    Article  MATH  Google Scholar 

  12. Cocco, R., Shaffer, F., Hays, R., Reddy Karri, S.B., Knowlton, T.: Particle clusters in and above fluidized beds. Powder Technol. 203(1), 3–11 (2010)

    Article  Google Scholar 

  13. Drew, D.A., Passman, S.L.: Theory of multicomponent fluids. Applied mathematical sciences, vol. 135. Springer (1999)

  14. Fan, M., Marshall, W., Daugaard, D., Brown, R.C.: Steam activation of chars produced from oat hulls and corn stover. Bioresour. Technol. 93(1), 103–107 (2004)

    Article  Google Scholar 

  15. Garg, R., Tenneti, S., Mohd.-Yusof, J., Subramaniam, S.: Direct numerical simulation of gas-solid flow based on the immersed boundary method. Engineering Science Reference, Ch. Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice (2009)

  16. Glowinski, R., Pan, T., Helsa, T., Joseph, D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25(5), 755–794 (1999)

    Article  MATH  Google Scholar 

  17. Glowinski, R., Pan, T.W., Helsa, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no–slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)

    Article  MATH  Google Scholar 

  19. Gore, R.A., Crowe, C.T.: Effect of particle size on modulating turbulent intensity. Int. J. Multiph. Flow 15(2), 279–285 (1989)

    Article  Google Scholar 

  20. Grace, J., Tuot, J.: Theory for cluster formation in vertically conveyed suspensions of intermediate density. T. I. Chem. Eng.–Lond. 57(1), 49–54 (1979)

    Google Scholar 

  21. Halvorsen, B., Guenther, C., O’Brien, T.J.: CFD calculations for scaling of a bubbling fluidized bed. In: Proceedings of the AIChE Annual Meeting, pp. 16–21. AIChE, San Francisco (2003)

    Google Scholar 

  22. Heynderickx, G.J., Das, A., De Wilde, J., Marin, G.: Effect of clustering on gas-solid drag in dilute two-phase flow. Ind. Eng. Chem. Res. 43(16), 4635–4646 (2004)

    Article  Google Scholar 

  23. Hill, R., Koch, D.L., Ladd, A.J.C.: The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213–241 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Hill, R., Koch, D.L., Ladd, A.J.C.: Moderate-Reynolds-numbers flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243–278 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jackson, R.: The dynamics of fluidized particles. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Kim, D., Choi, H.: Immersed boundary method for flow around an arbitrarily moving body. J. Comput. Phys. 212, 662–680 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Knowlton, T., Karri, S., Issangya, A.: Scale-up of fluidized-bed hydrodynamics. Powder Technol. 150, 72–77 (2005)

    Article  Google Scholar 

  30. Krol, S.A.P., De Lasa, H.: Particle clustering in down flow reactors. Powder Technol. 108(1), 6–20 (2000)

    Article  Google Scholar 

  31. Ladd, A.J.C.: Simulations of particle-fluid suspensions with the Lattice–Boltzmann equation. In: Plenary Lecture at the Third M.I.T. Conference on Computational Fluid and Solid Mechanics. Cambridge, Massachusetts (2005)

  32. Ladd, A.J.C., Verberg, R.: Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 119–1251 (2001)

    Article  MathSciNet  Google Scholar 

  33. Langford, J.A.: Toward Ideal Large-Eddy Simulation. Ph.D. thesis, University of Illinois at Urbana-Champaign, IL (2000)

  34. Li, F.X., Fan, L.-S.: Clean coal conversion processes progress and challenges. Energy Environ. Sci. 1, 248–267 (2008)

    Article  Google Scholar 

  35. Lucci, F., Ferrante, A., Elghobashi, S.: Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 5 (2010)

    Article  MATH  Google Scholar 

  36. Mohd. Yusof, J.: Interaction of Massive Particles with Turbulence. Ph.D. thesis, Cornell University (1996)

  37. Moran, J.C., Glicksman, L.R.: Experimental and numerical studies on the gas flow srrounding a single cluster applied to a circulating fluidized bed. Chem. Eng. Sci. 58(9), 1879–1886 (2003)

    Article  Google Scholar 

  38. Moran, J.C., Glicksman, L.R.: Mean and fluctuating gas phase velocities inside a circulating fluidized bed. Chem. Eng. Sci. 58, 1867–1878 (2003)

    Article  Google Scholar 

  39. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 142, 1 (1998)

    Article  MathSciNet  Google Scholar 

  40. Nomura, T., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95, 115 (1992)

    Article  MATH  Google Scholar 

  41. O’Brien, T., Syamlal, M.: Particle cluster effects in the numerical simulation of a circulating fluidized bed. In: Fourth International Conference on Circulating Fluidized Beds. Somerset, PA (1993)

  42. Pai, M.G., Subramaniam, S.: Second-order transport due to fluctuations in clustering particle systems. In: Proceedings of the 60th Annual Meeting of the Division of Fluid Dynamics. The American Physical Society. Salt Lake City, UT (2007)

  43. Pai, M.G., Subramaniam, S.: A comprehensive probability density function formalism for multiphase flows. J. Fluid Mech. 628, 181–228 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Patankar, N., Singh, P., Joseph, D., Glowinski, R., Pan, T.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 26(9), 1509–1524 (2000)

    Article  MATH  Google Scholar 

  45. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 25, 220 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Pita, J., Sundaresan, S.: Gas-solid flow in vertical tubes. AIChE J. 37(7), 1009–1018 (1991)

    Article  Google Scholar 

  48. Pita, J., Sundaresan, S.: Developing flow of a gas-particle mixture in a vertical riser. AIChE J. 39(4), 541–552 (1993)

    Article  Google Scholar 

  49. Pope, S.: Turbulent Flows. Cambridge University Press (2000)

  50. Prosperetti, A., Oguz, H.: PHYSALIS: a new o(N) method for the numerical simulation of disperse systems. Part I: potential flow of spheres. J. Comput. Phys 167, 196–216 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. Technical Report TM81315, NASA (1981)

  52. Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y., Gylfason, A.: Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100(21), 214501 (2008)

    Article  Google Scholar 

  53. Sharma, N., Patankar, N.: A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comput. Phys. 205(2), 439–457 (2005)

    Article  MATH  Google Scholar 

  54. Sinclair, J., Jackson, R.: Gas-particle flow in a vertical pipe with particle-particle interactions. AIChE J. 35, 1473–1486 (1989)

    Article  Google Scholar 

  55. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, NY (1995)

    MATH  Google Scholar 

  56. Takagi, S., Oguz, H., Zhang, Z., Prosperetti, A.: PHYSALIS: a new method for particle simulation. Part II: two-dimensional Navier-stokes flow around cylinders. J. Comput. Phys. 187, 371–390 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Ten Cate, A., Derksen, J.J., Portela, L.M., van den Akker, H.E.A.: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233–271 (2004)

    Article  MATH  Google Scholar 

  58. Tenneti, S., Garg, R., Hrenya, C.M., Fox, R.O., Subramaniam, S.: Direct numerical simulation of gas-solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol. 203(1), 57–69 (2010)

    Article  Google Scholar 

  59. Tsuji, Y., Morikawa, Y., Shiomi, H.: LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417–434 (1984)

    Article  Google Scholar 

  60. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. Uhlmann, M.: Investigating turbulent particulate channel flow with interface-resolved DNS. In: 6th International Conference on Multiphase Flow ICMF 2007. Leipzig, Germany, 9–13 July 2007

  62. van der Hoef, M.A., Beetstra, R., Kuipers, J.: Lattice–Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233–254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  63. Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157, 746–761 (1999)

    Article  MathSciNet  Google Scholar 

  64. Wylie, J., Koch, D.L., Ladd, A.: Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  65. Xu, Y.: Modeling and direct numerical simulation of particle–laden turbulent flows. Ph.D. thesis, Iowa State Univ., Ames, IA (2008)

  66. Xu, Y., Subramaniam, S.: Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows. Phys. Fluids doi:10.1063/1.2756579 (2007)

    Google Scholar 

  67. Yang, N., Wang, W., Ge, W., Li, J.H.: CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96(1–3), 71–80 (2003)

    Article  Google Scholar 

  68. Yin, X., Sundaresan, S.: Drag law for bidisperse gas-solid suspensions containing equally sized spheres. Ind. Eng. Chem. Res. 48(1), 227–241 (2008)

    Article  Google Scholar 

  69. Zhang, Z., Prosperetti, A.: A method for particle simulations. J. Appl. Mech. 70, 64–74 (2003)

    Article  MATH  Google Scholar 

  70. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle flow simulations. J. Comput. Phys 210, 292–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  71. Zhang, M., Qian, Z., Yu, H., Wei, F.: The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. Powder Technol. 129(1–3), 46–52 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Subramaniam.

Additional information

Submitted for the Special Issue dedicated to S. B. Pope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Subramaniam, S. Effect of Particle Clusters on Carrier Flow Turbulence: A Direct Numerical Simulation Study. Flow Turbulence Combust 85, 735–761 (2010). https://doi.org/10.1007/s10494-010-9298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9298-8

Keywords

Navigation