Skip to main content
Log in

Direct Numerical Simulation of Subsonic Round Turbulent Jet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulation(DNS) of spatially developing round turbulent jet flow with Reynolds number 4,700 was carried out. Over 20 million grid points were used in this simulation. Fully compressible three-dimensional Navier–Stokes equations were solved. High order explicit spatial difference schemes and Runge–Kutta time integration scheme were used to calculate derivatives and time marching, respectively. Non-reflecting boundary conditions and exit zone techniques were adopted. Some refined computational grids were used in order to capture the smallest turbulent structures near the centerline of the jet. Low level disturbance were imposed on the jet inflow velocity to trigger the developing of turbulence. Turbulent statistics such as mean velocity, Reynolds stresses, third order velocity moments were obtained and compared with experimental data. One-dimensional velocity autospectra was also calculated. The inertial region where the spectra decays according to the k − 5/3 was observed. The quantitative profiles of mean velocity and all of the third order velocity moments which were difficult to measure via experimental techniques were presented here in detail. The jet flow was proven to be close to fully self-similar around 19 jet diameters downstream of jet exit. The statistic data and revealed flow feature obtained in this paper can provide valuable reference for round turbulent jet research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612 (1969)

    Article  ADS  Google Scholar 

  2. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994)

    Article  ADS  Google Scholar 

  3. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1992)

    Google Scholar 

  4. Xu, G., Antonia, R.A.: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677–683 (2002)

    Google Scholar 

  5. Boersma, B.J., Brethouwer, G., Nieuwstadt, F.T.M.: A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10, 899–909 (1998)

    Article  ADS  Google Scholar 

  6. Boersma, B.J.: Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet. Fluid Dyn. Res. 35, 425–447 (2004)

    Article  MATH  ADS  Google Scholar 

  7. Uzun, A., Koutsavdis, K., Blaisdell, G.A., Lyrintzis, A.S.: Direct numerical simulation of 3-D jets using compact schemes and spatial filtering. AIAA Paper 2001–2543 (2001)

  8. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Freund, J.B.: Direct numerical simulation of the noise from a mach 0.9 jet. In: Proceedings of FEDSM’98 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco (1999)

  10. Freund, J.B.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  ADS  Google Scholar 

  11. Picano, F., Casciola, C.M.: Small-scale isotropy and universality of axisymmetric jets. Phys. Fluids 19, 118106 (2007)

    Article  ADS  Google Scholar 

  12. Ahlman, D., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Phys. Fluids 19, 065102 (2007)

    Article  Google Scholar 

  13. Stanley, S.A., Sarkar, S., Mellado, J.P.: A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377–407 (2002)

    Article  MATH  ADS  Google Scholar 

  14. Reichert, R.S., Biringen, S.: Numerical simulation of compressible plane jets. Mech. Res. Commun. 34, 249–259 (2007)

    Article  MathSciNet  Google Scholar 

  15. Balarac, G., Metais, O., Lesieur, M.: Mixing enhancement in coaxial jets through inflow forcing: a numerical study. Phys. Fluids. 19, 075102 (2007)

    Article  Google Scholar 

  16. Balarac, G., Si-Ameur, M., Lesieur, M., Metais, O.: Direct numerical simulations of high velocity ratio coaxial jets: mixing properties and influence of upstream conditions. J. Turbul. 8, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Visbal, M.R., Gaitonde, D.V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37, 1231–1239 (1999)

    Article  ADS  Google Scholar 

  19. Freund, J.B., Lele, S.K., Moin, P.: Numerical simulation of a Mach 1.92 turbulent jet and its sound field. AIAA J. 38, 2023–2031 (2000)

    Article  ADS  Google Scholar 

  20. Wang, Z.H., Fan, J.R., et al.: Direct numerical simulation of hydrogen turbulent lifted jet flame in a vitiated coflow. Chin. Sci. Bull. 52, 2147–2156 (2007)

    Article  Google Scholar 

  21. Fan, J.R., Luo, K., et al.: Direct numerical simulation of a near-field particle-laden plane turbulent jet. Phys. Rev., E Stat. Nonlin. Soft Matter Phys. 70, 026303 (2004)

    ADS  Google Scholar 

  22. Kennedy, C.A., Carpenter, M.H.: Several new numerical-methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397–433 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zang, T.A.: On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7, 27–40 (1991)

    Article  MATH  ADS  Google Scholar 

  24. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. NASA TM, 109112 (1994)

  26. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89, 439–461 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Baum, M., Poinsot, T., Thevenin, D.: Accurate boundary-conditions for multicomponent reactive flows. J. Comput. Phys. 116, 247–261 (1995)

    Article  MATH  ADS  Google Scholar 

  30. Yoo, C.S., Wang, Y., Trouve, A., Im, H.G.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theory Model. 9, 617–646 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combus. Theory Model. 11, 259–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227, 5105–5143 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Colonius, T., Lele, S.K., Moin, P.: Boundary-conditions for direct computation of aerodynamic sound generation. AIAA J. 31, 1574–1582 (1993)

    Article  MATH  ADS  Google Scholar 

  34. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  ADS  Google Scholar 

  35. Maidi, M., Lesieur, M.: Large eddy simulations of spatially growing subsonic and supersonic turbulent round jets. J. Turbul. 6, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  36. Zhao, W., Frankel, S.H., Mongeau, L.: Large eddy simulations of sound radiation from subsonic turbulent jets. AIAA J. 39, 1469–1477 (2001)

    Article  ADS  Google Scholar 

  37. Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Recent progress towards a large eddy simulation code for jet aeroacoustics. AIAA Paper 2002–2598 (2002)

  38. da Silva, C.B., Metais, O.: Vortex control of bifurcating jets: a numerical study. Phys. Fluids 14, 3798–3819 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., He, P., Lv, Y. et al. Direct Numerical Simulation of Subsonic Round Turbulent Jet. Flow Turbulence Combust 84, 669–686 (2010). https://doi.org/10.1007/s10494-010-9248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9248-5

Keywords

Navigation