Skip to main content

Large Eddy Simulation of Single Stream Jet Using High-Order Methods

  • Chapter
  • First Online:
TILDA: Towards Industrial LES/DNS in Aeronautics

Abstract

This chapter deals with the prediction of turbulent jet simulations, which are seen to be efficient flow cases to investigate further compressible LES solvers regarding their ability to simulate jet noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The azimuthal order m is defined from the azimuthal Fourier transform: \(TF_\theta [g(\theta )]=\frac{1}{2\pi }\int ^{+\pi }_{-\pi }g(\theta )e^{im\theta }d\theta \).

References

  1. L. Cambier, S. Heib, S. Plot, The Onera elsA CFD software: input from research and feedback from industry. mi 14(3), 159–174 (2013)

    Google Scholar 

  2. C. Bogey, C. Bailly, A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194–214 (2004)

    Google Scholar 

  3. A. Fosso Pouangué, H. Deniau, F. Sicot, P. Sagaut, Curvilinear finite-volume schemes using high-order compact interpolation. J. Comput. Phys. 229(13), 5090–5122 (2010)

    Google Scholar 

  4. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002). ISSN 0021-9991

    Google Scholar 

  5. C. Bogey, C. Bailly, Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. Int. J. Heat Fluid Flow 27(4), 603–610 (2006)

    Article  Google Scholar 

  6. C. Bogey, C. Bailly, Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases. Acta Acust. United Acust. 88, 463–471 (2002)

    Google Scholar 

  7. H. Reichardt, The principles of turbulent heat transfer, in NACA TN. Technical report (1957)

    Google Scholar 

  8. S. Le Bras, H. Deniau, C. Bogey, G. Daviller, Development of compressible large-eddy simulations combining high-order schemes and wall modeling. AIAA J. 55(4), 1–12 (2017)

    Google Scholar 

  9. C. Bogey, C. Bailly, Effects of inflow conditions and forcing on subsonic jet flows and noise. AIAA J. 43(5), 1000–1007 (2005)

    Article  Google Scholar 

  10. A. Cassagne, J.F. Boussuge, N. Villedieu, G. Puigt, A. Genot, JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry, in 50th AAAF Conference (Toulouse, France, 2015)

    Google Scholar 

  11. J. Bridges, M. Wernet, Establishing consensus turbulence statistics for hot subsonic jets, in 16th AIAA/CEAS Aeroacoustics Conference (2010)

    Google Scholar 

  12. P. Jordan, Y. Gervais, J.C. Valière, H. Foulon, Final results from single point measurements, Project deliverable D3.4, JEAN-EU 5th Framework Program, G4RD-CT2000-0313. Technical report, Laboratoire d’Etudes Aérodynamiques (2002)

    Google Scholar 

  13. P. Jordan, Y. Gervais, J.C. Valière, H. Foulon, Results from acoutic field measurements, Project deliverable D3.4, JEAN-EU 5th Framework Program, G4RD-CT2000-0313. Technical report, Laboratoire d’Etudes Aérodynamiques (2002)

    Google Scholar 

  14. J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. A 264(1151) (1969)

    Google Scholar 

  15. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91 (1963)

    Google Scholar 

  16. N. Lupoglazoff, F. Vuillot, Calculs aéroacoustiques de la tuyère PHI50 en gaz froid avec maillages tétras-dominants. Technical report DAAC/DEFA, ONERA (2016)

    Google Scholar 

  17. M. Huet, Influence of boundary layers resolution on heated, subsonic, high Reynolds number jet flow and noise, in AIAA Paper (2141) (2013)

    Google Scholar 

  18. M. Lorteau, F. Cléro, F. Vuillot, Analysis of noise radiation mechanisms in hot subsonic jet from a validated LES solution. Phys. Fluids 27 (2015)

    Google Scholar 

  19. N. Lupoglazoff, F. Vuillot, Recent progress in numerical simulations for jet noise computation using LES on fully unstructured meshes, in AIAA Paper (2369) (2015)

    Google Scholar 

  20. F. Vuillot, N. Lupoglazoff, M. Lorteau, F. Cléro, Large-eddy simulation of jet noise from unstructered grids with turbulent nozzle boundary layer, in AIAA Paper (3046) (2016)

    Google Scholar 

  21. J.B. Chapelier, M. de la Llave Plata, F. Renac, E. Lamballais, Evaluation of a high-order DG method for the DNS of turbulent flows. Comput. Fluids 95 (2014)

    Google Scholar 

  22. F. Renac, M. de la Llave Plata, E. Martin, J.B. Chapelier, V. Couaillier, Aghora: a high-order DG solver for turbulent flow simulations, IDIHOM: Industrialisation of High-Order Methods—a top down approach. Notes Numer. Fluid Mech. Multidiscip. Des. 128 (2015)

    Google Scholar 

  23. J.B. Chapelier, M. de la Llave Plata, E. Lamballais, Development of a multiscale LES model in the context of a modal discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 307 (2016)

    Google Scholar 

  24. M. de la Llave Plata, V. Couaillier, M. le Pape, On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence. Comput. Fluids 176, 320–337 (2018)

    Google Scholar 

  25. M. Lorteau, M. De La Llave Plata, V. Couaillier, Turbulent jet simulation using high-order DG methods for aeroacoustic analysis. Int. J. Heat Fluid Flow 70, 380–390 (2018) (Elsevier)

    Google Scholar 

  26. A. Refloch, B. Courbet, A. Murrone, P. Villedieu, C. Laurent, P. Gilbank, J. Troyes, L. Tessé, G. Chaineray, J. Dargaud, E. Quémerais, F. Vuillot, CEDRE software. Aerosp. Lab 2 (2011)

    Google Scholar 

  27. F. Dupoirieux, N. Bertier, The models of turbulent combustion in the CHARME solveur of CEDRE. Aerosp. Lab 2 (2011)

    Google Scholar 

  28. A. Langenais, F. Vuillot, J. Troyes, C. Bailly, Accurate simulation of the noise generated by a hot supersonic jet including turbulence tripping and nonlinear acoustic propagation. Phys. Fluids 31(1), 016105 (2019) (AIP Publishing)

    Google Scholar 

  29. V. Fleury, C. Bailly, E. Jondeau, M. Michard, D. Juvé, Space-time correlations in two subsonic jets using dual particle image velocimetry measurements. AIAA J. 46(10) (2008)

    Google Scholar 

  30. C. Bogey, O. Marsden, C. Bailly, Large-eddy simulation of the flow and acoustics fields of a Reynolds number \(10^5\) subsonic jet with tripped exit boundary layers. Phys. Fluids 23 (2011)

    Google Scholar 

  31. G. Karypis, V. Kumar, METIS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, University of MN, Department of Computer Science and Engineering (1998)

    Google Scholar 

  32. G. Rahier, J. Prieur, F. Vuillot, N. Lupoglazoff, A. Biancherin, Investigation of integral surface formulations for acoustic post-processing of unsteady aerodynamic jet simulations. Aerosp. Sci. Technol. 8 (2004)

    Google Scholar 

  33. C. Bogey, O. Marsden, C. Bailly, Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of \(10^5\). J. Fluid Mech. 701 (2012)

    Google Scholar 

  34. C. Bogey, C. Bailly, Influence of nozzle-exit boundary-layer conditions on the flow and acoustics fields of initially laminar jets. J. Fluid Mech. 663 (2010)

    Google Scholar 

  35. C. Bogey, C. Bailly, An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J. Fluid Mech. 583 (2007)

    Google Scholar 

  36. S. Grizzi, R. Camussi, Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet. J. Fluid Mech. 698 (2012)

    Google Scholar 

  37. K.B.M.Q. Zaman, Effect of initial condition on subsonic jet noise. AIAA J. 23(9) (1985)

    Google Scholar 

Download references

Acknowledgements

This work was granted access to the HPC resources of the Cines (Centre informatique national de l’enseignement supérieur) under the allocations 2016-c2016067561 and 2017-A0012a07561 made by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Boussuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boussuge, J.F. et al. (2021). Large Eddy Simulation of Single Stream Jet Using High-Order Methods. In: Hirsch, C., et al. TILDA: Towards Industrial LES/DNS in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-030-62048-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62048-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62047-9

  • Online ISBN: 978-3-030-62048-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics