Skip to main content
Log in

Towards Sensitizing the Nonlinear v 2 − f Model to Turbulence Structures

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper a one-way coupling between the nonlinear v 2 − f model by Pettersson Reif (Flow Turbul Combust 76:241–256, 2006) and an algebraic structure-based model have been investigated. Comparisons with available experimental and numerical data indicate that the compatibility between the two models is good and that their joint performance is satisfactory in the cases considered here. A full coupling between the models seems therefore a potentially viable route towards a significant advancement of engineering turbulence models and their predictive capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope, S.B.: A more general eddy-viscosity hypothesis. J. Fluid Mech. 72, 331–340 (1975)

    Article  MATH  ADS  Google Scholar 

  2. Taulbee, D.B.: An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids 4, 2555–2561 (1992)

    Article  MATH  ADS  Google Scholar 

  3. Durbin, P.A.: Near-wall turbulence closure modeling without ‘damping’ functions. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)

    MATH  Google Scholar 

  4. Durbin, P.A., Pettersson Reif B.A.: The elliptic relaxation method. In: Closure Strategies for Turbulent and Transitional Flows, pp. 127–152. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Manceau, R., Hanjalic, K.: A new form of the elliptic relaxation equation to account for wall effects in RANS modeling. Phys. Fluids 12, 2345–2351 (2000)

    Article  ADS  Google Scholar 

  6. Shin, J.K., Chun, K.H., Choi, Y.D.: Refinement of a second moment closure by the elliptic blending equation and its application to turbulent rotating channel flow. J. Turbul. 4, 030 (2003)

    Article  ADS  Google Scholar 

  7. Manceau, R.: An improved version of the elliptic blending model: application to non-rotating and rotating channel flow. In: 4th Int. Symp. Turbulence and Shear Flow Phenomena, Williamsburg, June 2005

  8. Parneix, H., Durbin, P.A., Behnia M.: Computation of 3-D turbulent boundary layers using the V2F model. Flow Turbul. Combust. 60, 19–46 (1998)

    Article  MATH  Google Scholar 

  9. Parneix, H., Behnia, M., Durbin, P.A.: Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal. J. Heat Transfer 121, 43–49 (1999)

    Article  Google Scholar 

  10. Sveningsson, A., Pettersson Reif, B.A., Davidson, L.: Modelling the entrance region in a plane asymmetric diffuser by elliptic relaxation. In: 4th Int. Symp. Turbulence and Shear Flow Phenomena, Williamsburg, June 2005

  11. Davidson, L., Farahnieh, B.: A finite-volume code employing collocated variable arrangement and Cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries. Thermo and Fluid Dynamics. Chalmers University of Technology, Rept. 95/11 (1995)

  12. Durbin, P.A.: A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

    Article  ADS  Google Scholar 

  13. Pettersson Reif, B.A.: Towards a nonlinear eddy viscosity model based on elliptic relaxation Flow Turbul. Combust. 76, 241–256 (2006)

    Article  Google Scholar 

  14. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 2, 1525–1532 (1983)

    Article  ADS  Google Scholar 

  15. Langer C.A., Reynolds W.C.: A new algebraic structure-based turbulence model for rotating wall-bounded flows. Technical Report TF-85, Mechanical. Engineering Department, Stanford University (2003)

  16. Haire, S.L., Reynolds W.C.: Toward an affordable two-equation structure-based turbulence model. Technical Report TF-84, Mechanical. Engineering Department, Stanford University (2003)

  17. Kassinos, S.C., Reynolds W.C.: A structure-based model for the rapid distortion of homogeneous turbulence. Technical Report TF-61, Mechanical. Engineering Department, Stanford University (1994)

  18. Reynolds, W.C., Kassinos, S.C., Langer, C.A., Haire, S.L.: New directions in turbulence modeling. Int. Symp. Turbulence, Heat, and Mass Transfer, (2005), Nagoya, 3–6 April 2000 (http://asbm.stanford.edu)

  19. Kassinos, S.C., Reynolds, W.C., Rogers, M.M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Pettersson Reif, B.A., Gatski, T.B., Rumsey, C.L.: On the behaviour of two-equation models in non-equilibrium homogeneous turbulence. Phys. Fluids 18(6), 065108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rumsey, C.L., Pettersson Reif, B.A., Gatski, T.B.: Arbitrary steady-state solutions with the K-epsilon model. AIAA J. 44, 1586–1592 (2006)

    Article  ADS  Google Scholar 

  22. Deldicque, A.: Etude de L’influence du nombre de Reynolds sur de ecoulements turbulents de Couette-Poiseuille a L’aide d’une approche experimentale et d’une modelisation aux constraintes de Reynolds. PhD thesis, No. d’ordre: 1618, University of Lille (1995)

  23. Gilliot-Ottavy, A.: Characterisation par anemometrie a fils chauds d’ecoulements turbulents de Poiseuille et de Couette-Poiseuille en vue de la validation de modeles de turbulence PhD thesis, No. d’ordre: 2146, University of Lille (1997)

  24. Orlandi, P.: Database of turbulent channel flow with moving walls. http://dma.ing.uniroma1.it/users/orlandi (2007)

  25. Manceau, R., Wang, M., Durbin, P.A.: Assessment of non-local effect on pressure term in RANS modeling using a DNS database. In: Proc. Summer Program 1998, pp. 303–322. Center for Turbulence Research, Stanford (1998)

  26. Lien, F.S., Durbin, P.A., Parneix S.: Non-linear v 2 − f modelling with application to aerodynamic flow. In: Proc. 11th Symposium on Turbulent Shear Flows, Grenoble, September 1997

  27. Skote, M.: Studies of turbulent boundary layer flow through direct numerical simulations. PhD thesis, Royal Institute of Technology, Stockholm (2001)

  28. Hoyas, S., Jimènez, J.: Scaling of velocity fluctuations in turbulent channels up to Re τ  = 2000 Phys. Fluids 18, 011702 (2006)

    Article  ADS  Google Scholar 

  29. del Alamo, J.C., Jimènez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels J. Fluid Mech. 500, 135–144 (2004)

    Article  MATH  ADS  Google Scholar 

  30. del Alamo, J.C., Jimènez, J.: Spectra of the very large anisotropic scales in turbulent channels Phys. Fluids 15, L41–L44 (2003)

    Article  Google Scholar 

  31. Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry J. Fluid Mech 535, 143–188 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Durbin, P.A.: On the k − ε stagnation point anomaly. Int. J. Heat Fluid Flow 17, 89–90 (1995)

    Article  Google Scholar 

  33. Kassinos S.C., Langer, C.A., Kalitzin, G., Iaccarino, G.: A simplified structure-based model using standard turbulence scale equations: computation of rotating wall-bounded flows. Int. J. Heat Fluid Flow 27, 653–660 (2006)

    Article  Google Scholar 

  34. Manceau, R., Hanjalic, K.: Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14, 3868–3879 (2002)

    Article  ADS  Google Scholar 

  35. Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78, 177–202 (2007)

    Article  Google Scholar 

  36. Reynolds, W.C., Langer, C.A., Kassinos, S.C.: Structure and scales in turbulence modeling Phys. Fluids 14, 2485-2492 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Anders Pettersson Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson Reif, B.A., Mortensen, M. & Langer, C.A. Towards Sensitizing the Nonlinear v 2 − f Model to Turbulence Structures. Flow Turbulence Combust 83, 185–203 (2009). https://doi.org/10.1007/s10494-008-9194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9194-7

Keywords

Navigation