Skip to main content
Log in

Multisensor Hot Wire Vorticity Probe Measurements of the Formation Field of Two Corotating Vortices

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Experimental evidence is reported, regarding the formation of a pair of co-rotating tip vortices by a split wing configuration, consisting of two half wings at equal and opposite angles of attack. Simultaneous measurements of the three-dimensional vector fields of velocity and vorticity were conducted on a cross plane at a downstream distance corresponding to 0.3 cord lengths (near wake), using an in-house constructed 12-sensor hot wire anemometry vorticity probe. The probe consists of three closely separated orthogonal 4-wire velocity sensor arrays, measuring simultaneously the three-dimensional velocity vector at three closely spaced locations on a cross plane of the flow filed. This configuration makes possible the estimation of spatial velocity derivatives by means of a forward difference scheme of first order accuracy. Velocity measurements obtained with an X-wire are also presented for comparison. In this near wake location, the flow field is dictated by the pressure distribution established by the flow around the wings, mobilizing large masses of air and leading to the roll up of fluid sheets. Fluid streams penetrating between the wings collide, creating on the cross plane flow a stagnation point and an “impermeable” line joining the two vortex centres. Along this line fluid is directed towards the two vortices, expanding their cores and increasing their separation distance. This feeding process generates a dipole of opposite sign streamwise mean vorticity within each vortex. The rotational flow within the vortices obligates an adverse streamwise pressure gradient leading to a significant streamwise velocity deficit characterizing the vortices. The turbulent flow field is the result of temporal changes in the intensity of the vortex formation and changes in the position of the cores (wandering).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A., Satyaprakash, B.R., Hussain, A.K.M.F.: Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119, 55–89 (1982). doi:10.1017/S0022112082001268

    Article  ADS  Google Scholar 

  2. Antonia, R.A., Zhu, Y., Kim, J.: On the measurement of lateral velocity derivatives in turbulent flows. Exp. Fluids 15, 65–69 (1993)

    Google Scholar 

  3. Bandyopadhyay, P.R., Stead, D.J., Ash, R.L.: Organized nature of a turbulent trailing vortex. AIAA J. 29, 1627–1633 (1991). doi:10.2514/3.10784

    Article  ADS  Google Scholar 

  4. Batchelor, G.K.: Axial flow in trailing line vortices. J. Fluid Mech. 20(4), 645–658 (1964). doi:10.1017/S0022112064001446

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bertenyi, T., Graham, W.: Experimental observations of the merger of co-rotating wake vortices. J. Fluid Mech. 586, 397–422 (2007). doi:10.1017/S0022112007006891

    Article  MATH  ADS  Google Scholar 

  6. Bilanin, A.J., Snedeker, R.S., Teske, M.E.: Interactions and merging of line vortices. AFOSR-TR (U.S., Air Force, Off. Sci. Res.) 76–0873, ARAP-276 (1976)

  7. Bilanin, A.J., Teske, M.E., Donaldson, C., Snedeker, R.S.: Viscous effects in aircraft trailing vortices. In: Wake-Vortex Minimization, NASA SP409 (1977a)

  8. Brandt, S.A., Iversen, J.D.: Merging of aircraft trailing vortices. J. Aircr. 14, 1212–1230 (1977). doi:10.2514/3.58917

    Article  Google Scholar 

  9. Cavo, A., Lemonis, G., Panidis, T., Papailiou, D.: Performance of a 12-sensor vorticity probe in the near field of a rectangular turbulent jet. Exp. Fluids 43, 17–30 (2007). doi:10.1007/s00348-007-0308-0

    Article  Google Scholar 

  10. Cerretelli, C., Williamson, C.H.K.: The physical mechanism for vortex merging. J. Fluid Mech. 475, 41–77 (2003). doi:10.1017/S0022112002002847

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Chen, A.L., Jacob, J.D., Savas, O.: Dynamics of co-rotating vortex pairs in the wakes of flapped airfoils. J. Fluid Mech. 382, 155–193 (1999). doi:10.1017/S0022112098003814

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Christiansen, J.B., Zabusky, N.J.: Instability, coalescence and fission of finite area vortex structures. J. Fluid Mech. 61, 219–243 (1973). doi:10.1017/S0022112073000686

    Article  MATH  ADS  Google Scholar 

  13. Corsiglia, V.R., Iversen, J.D., Orloff, K.L.: Laser-velocimeter surveys of merging vortices in a wind tunnel. J. Aircr. 15, 762–768 (1978). doi:10.2514/3.58444

    Article  Google Scholar 

  14. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8(12), 2172–2179 (1970). doi:10.2514/3.6083

    Article  ADS  Google Scholar 

  15. Devenport, W.J., Rife, M., Liapis, S., Follin, G.J.: The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996). doi:10.1017/S0022112096001929

    Article  ADS  MathSciNet  Google Scholar 

  16. Devenport, W.J., Zsoldos, J.S., Vogel, C.M.: The structure and development of a counter-rotating wing-tip vortex pair. J. Fluid Mech. 312, 67–106 (1997). doi:10.1017/S0022112096001929

    Article  ADS  Google Scholar 

  17. Devenport, W.J., Vogel, C.M., Zsoldos, J.S.: Flow structure produced by the interaction and merger of a pair of co-rotating wing-tip vortices. J. Fluid Mech. 394, 357–377 (1999). doi:10.1017/S0022112099005777

    Article  MATH  ADS  Google Scholar 

  18. Dizes, S., Verga, A.: Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389–410 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  19. Eckelmann, H., Nychas, S.G., Brodkey, R.S., Wallace, J.M.: Vorticity and turbulence production in pattern recognized turbulent flow structures. Phys. Fluids. 20, S225–S231 (1977). doi:10.1063/1.861734

    Article  ADS  Google Scholar 

  20. George, W.K.: Quantitative measurement with the burst-mode laser-Doppler anemometer. Exp. Therm. Fluid Sci. 1, 29–40 (1988). doi:10.1016/0894-1777(88)90045-3

    Article  ADS  Google Scholar 

  21. Ghias, R., Mittal, R., Dong, H.: Study of tip-vortex formation using large-eddy simulation. In: AIAA 43rd Aerospace Science Meeting and Exhibit, pp. 10853–10865 (2005)

  22. Green, S.I., Acosta, A.J.: Unsteady flow in trailing vortices. J. Fluid Mech. 227, 107–134 (1991). doi:10.1017/S0022112091000058

    Article  ADS  Google Scholar 

  23. Gursul, I., Xie, W.: Origin of vortex wandering over delta wings. J. Aircr. 37(2), 348–350 (2000)

    Article  Google Scholar 

  24. Hoffmann, E.F., Joubert, P.N.: Turbulent line vortices. J. Fluid Mech. 16, 395–411 (1963). doi:10.1017/S0022112063000859

    Article  ADS  Google Scholar 

  25. Honkan, A., Andreopoulos, J.: Experimental investigation of time-resolved vorticity in two dimensional turbulent boundary layer flows. In: AIAA, Fluid Dynamics Conference, 24th, Orlando, FL, July 6–9, 10 p (1993)

  26. Honkan, A., Andreopoulos, Y.: Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 29–96 (1997). doi:10.1017/S0022112097006770

    Article  ADS  MathSciNet  Google Scholar 

  27. Iversenn, J.D., Corsiglia, V.R., Park, S., Backhus, D.R., Brickman, R.A.: Hot-wire, laser-anemometer, and force measurements of interacting trailing vortices. J. Aircr. 16, 448–454 (1979). doi:10.2514/3.58547

    Article  Google Scholar 

  28. Jacob, J.D.: Experimental investigation of co-rotating trailing vortices. In: AIAA-98-0590, 36th Aerospace Sciences Meeting & Exhibit (1998)

  29. Jacquin, L., Fabre, D., Geffroy, P., Coustols, E.: The properties of a transport aircraft wake in the extended near field: an experimental study. AIAA Pap. 2001-1038 (2001)

  30. Jacquin, L., Fabre, D., Sipp, D., Coustols, E.: Unsteadiness, instability and turbulence in trailing vortices. C. R. Phys. 6, 399–414 (2005). doi:10.1016/j.crhy.2005.05.007

    Article  ADS  Google Scholar 

  31. Jimenez, J.: Stability of a pair of co-rotating vortices. Phys. Fluids 18(11), 1580–1581 (1975). doi:10.1063/1.861056

    Article  MATH  ADS  Google Scholar 

  32. Kastrinakis, E.G., Eckelmann, H., Willmarth, W.W.: Inf1uence of the flow velocity on Kovasznay type vorticity probe. Rev. Sci. Instrum. 50, 759–767 (1979). doi:10.1063/1.1135917

    Article  ADS  Google Scholar 

  33. Kistler, A.L.: The vorticity meter. MS. Thesis, The Johns Hopkins Univ. (1952)

  34. Kit, E., Tsinober, A., Dracos, T.: Velocity gradients in turbulent jet flow. Appl. Sci. Res. 51, 185–190 (1993). doi:10.1007/BF01082535

    Article  Google Scholar 

  35. Klewicki, J.C., Falco, R.E.: On accurately measuring statistics associated with small scale structure in turbulent boundary layers hot-wires probes. J. Fluid Mech. 219, 119–142 (1990). doi:10.1017/S0022112090002889

    Article  ADS  Google Scholar 

  36. Kovasznay, L.S.G.: Quart. Prog. Rep. Of Aero. Dept. Contract NORD 8036-JHB-39. The Johns Hopkins Univ. (1950)

  37. Lemonis, G., Dracos, T.: Determination of 3-D velocity and vorticity vectors in turbulent flows by multi-hotwire anemometry. In: Dracos T. (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques, vol. 4. Kluwer, Dordrecht (1996)

    Google Scholar 

  38. Lemonis, G., Dracos, T.: A new calibration and data reduction method for turbulence measurement by multi-hot wire probes. Exp. Fluids 18, 319–328 (1995). doi:10.1007/BF00211387

    Article  Google Scholar 

  39. Lemonis, G.: Three-dimensional measurements of velocity, velocity gradients and related properties in turbulent flows. Aerosp. Sci. Technol. 7, 453–461 (1997). doi:10.1016/S1270-9638(97)90007-9

    Article  Google Scholar 

  40. Leweke, T., Meunier, P., Laporte, F., Darracq, D.: Controlled interaction of co-rotating vortices. In: 3rd ONERA– DLRAerospace Symposium (ODAS 2001),ONERA, Paris, paper S2-3 (2001)

  41. Lin, C.C.: On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equations. Q. Appl. Math. 10(4), 295–306 (1953)

    MATH  Google Scholar 

  42. Lombardi, G., Skinner, P.: Wing-tip vortex in the near field: an experimental Study. J. Aircr. 42(5), 1366–1368 (2005). doi:10.2514/1.12314

    Article  Google Scholar 

  43. Lumley, J.L.: Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8, 1056–1062 (1965). doi:10.1063/1.1761355

    Article  MATH  ADS  Google Scholar 

  44. Marasli, B., Nguyen, P., Wallace, J.M.: A calibration technique for multiple sensor hot wire probes and its application to vorticity measurements in the wake of a circular cylinder. Exp. Fluids 15, 209–218 (1993). doi:10.1007/BF00189888

    Article  Google Scholar 

  45. Maxworthy, T.: Some experimental studies of vortex rings. J. Fluid Mech. 81, 465–495 (1977). doi:10.1017/S0022112077002171

    Article  ADS  Google Scholar 

  46. Melander, M.V., McWilliams, J.C., Zabusky, N.J.: Axisymmetrization and vorticity gradient intensification of an isolated vortex through filamentation. J. Fluid Mech. 178, 137–159 (1987). doi:10.1017/S0022112087001150

    Article  MATH  ADS  Google Scholar 

  47. Melander, M.V., Zabusky, N.J., McWilliams, J.C.: Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303–340 (1988). doi:10.1017/S0022112088002435

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Mestayer, P., Chambaud, P.: Some limitation to measurements of turbulence micro-structure with hot- and cold-wires. Boundary-Layer Meteorol. 16, 311–329 (1979). doi:10.1007/BF02220489

    Article  ADS  Google Scholar 

  49. Meunier, P., Dizes, S., Leweke, T.: Physics of vortex merging. C. R. Phys. 6, 431–450 (2005). doi:10.1016/j.crhy.2005.06.003

    Article  ADS  Google Scholar 

  50. Meunier, P., Leweke, T.: Three-dimensional instability during vortex merging. Phys. Fluids 13(10), 2747–2750 (2001). doi:10.1063/1.1399033

    Article  ADS  Google Scholar 

  51. Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125–159 (2005). doi:10.1017/S0022112005004325

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Moore, D.W., Saffman, P.G.: Structure of a line vortex in an imposed strain. In: Olsen, J.H., Goldburg, A., Rogers, M. (eds.) Aircraft Wake Turbulence and its Detection, pp. 339–354. Plenum, New York (1971)

    Google Scholar 

  53. Nguyen, P.N.: Simultaneous measurements of the velocity and vorticity vector fields in the turbulent near wake of a circular cylinder. PhD Dissertation University of Maryland (1993)

  54. Pailhas, G., Cousteix, J.: Method for analyzing four-hot-wire probe measurements. Rech. Aerosp. 2, 79 (1986)

    Google Scholar 

  55. Pao, Y.H.: Structure of turbulent velocity and scalar fields at large wave numbers. Phys. Fluids 8, 1063–1075 (1965). doi:10.1063/1.1761356

    Article  ADS  Google Scholar 

  56. Park, S.R., Wallace, J.M.: The inf1uence of instantaneous velocity gradients on turbulence properties measured with multi-sensor hot-wire probes. Exp. Fluids 16, 17–26 (1993). doi:10.1007/BF00188501

    Article  Google Scholar 

  57. Perrakis, K.K., Papailiou, D.D.: Turbulent vortex ring and entrainment mechanism. Prog. Astronaut. Aeronaut. AIAA 112, 105–115 (1988)

    Google Scholar 

  58. Rosemann, H.: Einfluß der geometrie von mehrfach-hitzdrahtsonden auf die meßergebnise inturbulenten strömungen. DLR-FB:89-26 (1989)

  59. Rossow, V.J.: Convective merging of vortex cores in lift-generated wakes. J. Aircr. 14, 283–290 (1977a). doi:10.2514/3.58772

    Article  Google Scholar 

  60. Rossow, V.J.: Inviscid modeling of aircraft trailing vortices. In: Wake-Vortex Minimization, NASA SP409 (1977b)

  61. Schaeffler, N.: The interaction of a synthetic jet and a turbulent boundary layer. In: AIAA 0643, 41st Aerospace Sciences Meeting & Exhibit (2003)

  62. Smits, A.J., Kummer, R.P.: The interaction and merging of two turbulent line vortices. AIAA Pap., 85-0046 (1985)

  63. Spalart, P.R.: Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107–108 (1998). doi:10.1146/annurev.fluid.30.1.107

    Article  ADS  MathSciNet  Google Scholar 

  64. Steger, J.L., Kutler, P.: Implicit finite-difference procedures for the computation of vortex wakes. AIAA J. 15, 581–590 (1977). doi:10.2514/3.60663

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Taylor, G.I.: Production and dissipation of vorticity in turbulent fluid. Proc. R. Soc. Lond. A 164, 15–23 (1938)

    Article  MATH  ADS  Google Scholar 

  66. Tsinober, A., Kit, E., Dracos, T.: Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169–192 (1992). doi:10.1017/S0022112092002325

    Article  ADS  Google Scholar 

  67. Van Dijk, A., Nieuwstadt, F.T.M.: The calibration of (multi-)hot-wire probes. 2. Velocity—calibration. Exp. Fluids 36, 550–564 (2004). doi:10.1007/s00348-003-0676-z

    Article  Google Scholar 

  68. Vukoslavčević, P., Petrovic, D., Wallace, J.M.: An analytical approach to the uniqueness problem of hot-wire probes to measure simultaneously three velocity components. Meas. Sci. Technol. 15, 1848–1854 (2004). doi:10.1088/0957-0233/15/9/023

    Article  ADS  Google Scholar 

  69. Vukoslavčević, P., Wallace, J.M., Balint, J.L.: The velocity and vorticity vector fields of a turbulent boundary layer. Part 1. Simultaneous measurement by hot-wire anemometry. J. Fluid Mech. 228, 25–51 (1991)

    ADS  Google Scholar 

  70. Vukoslavčević, P., Wallace, J.M.: Influence of velocity gradients on measurements of velocity and stream-wise vorticity with hot-wire X-array probes. Rev. Sci. Instrum. 52, 869–879 (1981). doi:10.1063/1.1136684

    Article  ADS  Google Scholar 

  71. Vukoslavčević, P., Wallace, J.M.: A 12-sensor hot-wire probe to measure the velocity and vorticity vectors in turbulent flow. Meas. Sci. Technol. 7, 1451–1461 (1996). doi:10.1088/0957-0233/7/10/016

    Article  ADS  Google Scholar 

  72. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids A 2, 7 (1990) doi:10.1063/1.857682

    Article  MathSciNet  Google Scholar 

  73. Wallace, J.M., Ong, L.: Local isotropy of the vorticity field in boundary layer at high Reynolds number. In: Proc. of the 5th European Turbulence Conference, Kluwer (1994)

  74. Wallace, J.M., Foss, J.F.: The measurement of vorticity in turbulent flows. Annu. Rev. Fluid Mech. 27, 469–514 (1995). doi:10.1146/annurev.fl.27.010195.002345

    Article  ADS  Google Scholar 

  75. Wallace, J.M.: Methods of measuring vorticity in turbulent flows. Exp. Fluids 4, 61–71 (1986). doi:10.1007/BF00266561

    Article  Google Scholar 

  76. Wyngaard, J.C.: Spatial resolution of the vorticity meter and other hot-wire arrays. J. Phys. E J. Sci. Instrum. 2, 983–987 (1969). doi:10.1088/0022-3735/2/11/320

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thrassos Panidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeos, A., Lemonis, G., Panidis, T. et al. Multisensor Hot Wire Vorticity Probe Measurements of the Formation Field of Two Corotating Vortices. Flow Turbulence Combust 83, 153–183 (2009). https://doi.org/10.1007/s10494-008-9193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9193-8

Keywords

Navigation