Flow, Turbulence and Combustion

, Volume 82, Issue 1, pp 1–23 | Cite as

Turbulent Flow and Dispersion of Inertial Particles in a Confined Jet Issued by a Long Cylindrical Pipe

  • Fabio Sbrizzai
  • Roberto VerziccoEmail author
  • Alfredo SoldatiEmail author


In this work we examine first the flow field of a confined jet produced by a turbulent flow in a long cylindrical pipe issuing in an abrupt angle diffuser. Second, we examine the dispersion of inertial micro-particles entrained by the turbulent flow. Specifically, we examine how the particle dispersion field evolves in the multiscale flow generated by the interactions between the large-scale structures, which are geometry dependent, with the smaller turbulent scales issued by the pipe which are advected downstream. We use Large-Eddy-Simulation (LES) for the flow field and Lagrangian tracking for particle dispersion. The complex shape of the domain is modelled using the immersed-boundaries method. Fully developed turbulence inlet conditions are derived from an independent LES of a spatially periodic cylindrical pipe flow. The flow field is analyzed in terms of local velocity signals to determine spatial coherence and decay rate of the coherent K–H vortices and to make quantitative comparisons with experimental data on free jets. Particle dispersion is analyzed in terms of statistical quantities and also with reference to the dynamics of the coherent structures. Results show that the particle dynamics is initially dominated by the Kelvin–Helmholtz (K–H) rolls which form at the expansion and only eventually by the advected smaller turbulence scales.


Turbulent flow Dispersion Inertial particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moin, P., Apte, S.V.: Large-eddy simulation of realistic gas turbine combustors. AIAA J. 44, 698–708 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiph. Flow 29, 1017–1038 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Soldati, A.: Particles turbulence interactions in boundary layers. ZAMM J. Appl. Math. Mech. 85, 683–699 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Righetti, M., Romano, G.P.: Particle-fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93–121 (2004)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Sbrizzai, F., Verzicco, R., Pidria, M.F., Soldati, A.: Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet. Int. J. Multiph. Flow 30, 1389–1417 (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Salvetti, M.V., Orlandi, P., Verzicco, R.: Numerical simulations of transitional axisymmetric coaxial jets. AIAA J. 34, 736–743 (1996)CrossRefADSGoogle Scholar
  8. 8.
    Akselvoll, K., Moin, P.: Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387–411 (1996)CrossRefADSGoogle Scholar
  9. 9.
    Na, Y., Moin, P.: Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, 175–202 (1998)zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Yule, A.J.: Large-scale structures in the mixing layer of a round jet. J. Fluid Mech. 89, 413–432 (1978)CrossRefADSGoogle Scholar
  11. 11.
    Hussain, A.K.M.F., Clark, A.R.: On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263–294 (1981)CrossRefGoogle Scholar
  12. 12.
    Hussain, A.K.M.F.: Coherent structures and incoherent turbulence. In: Tatsumi, T. (ed.) Turbulence and Chaotic Phenomena in Fluids, p. 453. North-Holland, Amsterdam (1983)Google Scholar
  13. 13.
    Hussain, A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)CrossRefADSGoogle Scholar
  14. 14.
    Verzicco, R., Orlandi, P.: A finite-difference scheme for the three dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Longmire, E.K., Eaton, J.K.: Structure of a particle laden-round jet. J. Fluid Mech. 236, 217–257 (1992)CrossRefADSGoogle Scholar
  16. 16.
    Ovchinnikov, V., Piomelli, U., Choudhari, M.M.: Numerical simulations of boundary-layer transition induced by a cylinder wake. J. Fluid Mech. 547, 413–441 (2006)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Orlandi, P., Fatica, M.: Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 43–72 (1997)zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Schmidt, S., Mclver, M.D., Blackburn, H.M., Rudman, M., Nathan, G.J.: Spectral element based simulations of turbulent pipe flow. In: 14th Australasian Fluid Mech. Conf., Adelaide, 9–14 December 2001Google Scholar
  19. 19.
    Verzicco, R., Orlandi, P. Eisenga, A.H.M., Van Heijst, G.J.: Dynamics of a vortex ring in a rotating fluid. J. Fluid Mech. 317, 215–239 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Orlandi, P.: Fluid Flow Phenomena. A Numerical Toolkit. Kluwer Academic, London (2000)Google Scholar
  21. 21.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Le, H., Moin, P.: An improvement of fractional-step methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 92, 369–379 (1991)zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary/finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (1986)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Lowery, P.S., Reynolds, W.C.: Numerical simulation of a spatially-developing, forced, plane mixing layer. Rep. TF-26, Thermosciences Division, Dept. of Mech. Engng, Stanford University (1986)Google Scholar
  26. 26.
    Pauley, L.L., Moin, P., Reynolds, W.C.: A numerical study of unsteady laminar boundary layer separation. Rep. TF-34, Thermosciences Division, Dept. of Mech. Engng, Stanford University (1988)Google Scholar
  27. 27.
    Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase flow with droplets and particles. CRC, Boca Raton (1998)Google Scholar
  28. 28.
    Chung, J.N., Troutt, T.R.: Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech. 186, 199–222 (1988)zbMATHCrossRefADSGoogle Scholar
  29. 29.
    Loth, E.: Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Eng. Comb. Sci. 26, 161–223 (2000)CrossRefGoogle Scholar
  30. 30.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)zbMATHCrossRefADSGoogle Scholar
  31. 31.
    Rowe, P.N., Enwood, G.A.: Drag forces in hydraulic model of a fluidized bed – Part I. Trans. Inst. Chem. Eng. 39, 43–47 (1962)Google Scholar
  32. 32.
    Kuerten, J.G.M., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation?. Phys. Fluids 17, Art. No. 011701 (2005)Google Scholar
  33. 33.
    Kuerten, J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, Art. No. 025108 (2006)Google Scholar
  34. 34.
    Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys Fluids 18, Art. No. 045103 (2006)Google Scholar
  35. 35.
    Shotorban, B., Mashayek, F.: Modeling subgrid-scale effects on particles by approximate deconvolution. Phys. Fluids 17(8), Art. No. 081701 (2005)Google Scholar
  36. 36.
    Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning Large–Eddy–Simulation of inertial particle dispersion in turbulent flows. Phys. Fluids 20, Art. No. 045100 (2008)Google Scholar
  37. 37.
    Schlichting, H.: Boundary-Layer Theory, 7th edn. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  38. 38.
    Davies, P.O.A.L., Fisher, M.J., Barratt, M.J.: The characteristic of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337–367 (1963)CrossRefADSGoogle Scholar
  39. 39.
    Bradshaw, P., Ferriss, D.H., Johnson, R.F.: Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591–624 (1964)zbMATHCrossRefADSGoogle Scholar
  40. 40.
    Hinze, J.O.: Turbulence, pp. 211–215. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Centro Interdipartimentale di Fluidodinamica e Idraulica, and Dipartimento di Energetica e MacchineUniversità di UdineUdineItaly
  2. 2.Dipartimento di Ingegneria Meccanica e Gestionale and Centre of Excellence for Computational Mechanics (CEMeC)Politecnico di BariBariItaly
  3. 3.Department of Fluid MechanicsCISMUdineItaly

Personalised recommendations