Skip to main content
Log in

Turbulent Flow and Dispersion of Inertial Particles in a Confined Jet Issued by a Long Cylindrical Pipe

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work we examine first the flow field of a confined jet produced by a turbulent flow in a long cylindrical pipe issuing in an abrupt angle diffuser. Second, we examine the dispersion of inertial micro-particles entrained by the turbulent flow. Specifically, we examine how the particle dispersion field evolves in the multiscale flow generated by the interactions between the large-scale structures, which are geometry dependent, with the smaller turbulent scales issued by the pipe which are advected downstream. We use Large-Eddy-Simulation (LES) for the flow field and Lagrangian tracking for particle dispersion. The complex shape of the domain is modelled using the immersed-boundaries method. Fully developed turbulence inlet conditions are derived from an independent LES of a spatially periodic cylindrical pipe flow. The flow field is analyzed in terms of local velocity signals to determine spatial coherence and decay rate of the coherent K–H vortices and to make quantitative comparisons with experimental data on free jets. Particle dispersion is analyzed in terms of statistical quantities and also with reference to the dynamics of the coherent structures. Results show that the particle dynamics is initially dominated by the Kelvin–Helmholtz (K–H) rolls which form at the expansion and only eventually by the advected smaller turbulence scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moin, P., Apte, S.V.: Large-eddy simulation of realistic gas turbine combustors. AIAA J. 44, 698–708 (2006)

    Article  ADS  Google Scholar 

  2. Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)

    Article  MATH  ADS  Google Scholar 

  3. Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiph. Flow 29, 1017–1038 (2003)

    Article  MATH  Google Scholar 

  4. Soldati, A.: Particles turbulence interactions in boundary layers. ZAMM J. Appl. Math. Mech. 85, 683–699 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Righetti, M., Romano, G.P.: Particle-fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93–121 (2004)

    Article  MATH  ADS  Google Scholar 

  6. Sbrizzai, F., Verzicco, R., Pidria, M.F., Soldati, A.: Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet. Int. J. Multiph. Flow 30, 1389–1417 (2004)

    Article  MATH  Google Scholar 

  7. Salvetti, M.V., Orlandi, P., Verzicco, R.: Numerical simulations of transitional axisymmetric coaxial jets. AIAA J. 34, 736–743 (1996)

    Article  ADS  Google Scholar 

  8. Akselvoll, K., Moin, P.: Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387–411 (1996)

    Article  ADS  Google Scholar 

  9. Na, Y., Moin, P.: Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, 175–202 (1998)

    Article  MATH  ADS  Google Scholar 

  10. Yule, A.J.: Large-scale structures in the mixing layer of a round jet. J. Fluid Mech. 89, 413–432 (1978)

    Article  ADS  Google Scholar 

  11. Hussain, A.K.M.F., Clark, A.R.: On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263–294 (1981)

    Article  Google Scholar 

  12. Hussain, A.K.M.F.: Coherent structures and incoherent turbulence. In: Tatsumi, T. (ed.) Turbulence and Chaotic Phenomena in Fluids, p. 453. North-Holland, Amsterdam (1983)

    Google Scholar 

  13. Hussain, A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  ADS  Google Scholar 

  14. Verzicco, R., Orlandi, P.: A finite-difference scheme for the three dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Longmire, E.K., Eaton, J.K.: Structure of a particle laden-round jet. J. Fluid Mech. 236, 217–257 (1992)

    Article  ADS  Google Scholar 

  16. Ovchinnikov, V., Piomelli, U., Choudhari, M.M.: Numerical simulations of boundary-layer transition induced by a cylinder wake. J. Fluid Mech. 547, 413–441 (2006)

    Article  MATH  ADS  Google Scholar 

  17. Orlandi, P., Fatica, M.: Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 43–72 (1997)

    Article  MATH  ADS  Google Scholar 

  18. Schmidt, S., Mclver, M.D., Blackburn, H.M., Rudman, M., Nathan, G.J.: Spectral element based simulations of turbulent pipe flow. In: 14th Australasian Fluid Mech. Conf., Adelaide, 9–14 December 2001

  19. Verzicco, R., Orlandi, P. Eisenga, A.H.M., Van Heijst, G.J.: Dynamics of a vortex ring in a rotating fluid. J. Fluid Mech. 317, 215–239 (1996)

    Article  ADS  Google Scholar 

  20. Orlandi, P.: Fluid Flow Phenomena. A Numerical Toolkit. Kluwer Academic, London (2000)

    Google Scholar 

  21. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Le, H., Moin, P.: An improvement of fractional-step methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 92, 369–379 (1991)

    Article  MATH  ADS  Google Scholar 

  23. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  24. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary/finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lowery, P.S., Reynolds, W.C.: Numerical simulation of a spatially-developing, forced, plane mixing layer. Rep. TF-26, Thermosciences Division, Dept. of Mech. Engng, Stanford University (1986)

  26. Pauley, L.L., Moin, P., Reynolds, W.C.: A numerical study of unsteady laminar boundary layer separation. Rep. TF-34, Thermosciences Division, Dept. of Mech. Engng, Stanford University (1988)

  27. Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase flow with droplets and particles. CRC, Boca Raton (1998)

    Google Scholar 

  28. Chung, J.N., Troutt, T.R.: Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech. 186, 199–222 (1988)

    Article  MATH  ADS  Google Scholar 

  29. Loth, E.: Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Eng. Comb. Sci. 26, 161–223 (2000)

    Article  Google Scholar 

  30. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)

    Article  MATH  ADS  Google Scholar 

  31. Rowe, P.N., Enwood, G.A.: Drag forces in hydraulic model of a fluidized bed – Part I. Trans. Inst. Chem. Eng. 39, 43–47 (1962)

    Google Scholar 

  32. Kuerten, J.G.M., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation?. Phys. Fluids 17, Art. No. 011701 (2005)

    Google Scholar 

  33. Kuerten, J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, Art. No. 025108 (2006)

  34. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys Fluids 18, Art. No. 045103 (2006)

    Google Scholar 

  35. Shotorban, B., Mashayek, F.: Modeling subgrid-scale effects on particles by approximate deconvolution. Phys. Fluids 17(8), Art. No. 081701 (2005)

    Google Scholar 

  36. Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning Large–Eddy–Simulation of inertial particle dispersion in turbulent flows. Phys. Fluids 20, Art. No. 045100 (2008)

  37. Schlichting, H.: Boundary-Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  38. Davies, P.O.A.L., Fisher, M.J., Barratt, M.J.: The characteristic of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337–367 (1963)

    Article  ADS  Google Scholar 

  39. Bradshaw, P., Ferriss, D.H., Johnson, R.F.: Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591–624 (1964)

    Article  MATH  ADS  Google Scholar 

  40. Hinze, J.O.: Turbulence, pp. 211–215. McGraw-Hill, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Verzicco or Alfredo Soldati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sbrizzai, F., Verzicco, R. & Soldati, A. Turbulent Flow and Dispersion of Inertial Particles in a Confined Jet Issued by a Long Cylindrical Pipe. Flow Turbulence Combust 82, 1–23 (2009). https://doi.org/10.1007/s10494-008-9163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9163-1

Keywords

Navigation