Skip to main content
Log in

Particle Velocity and Acceleration in Turbulent Bent Pipe Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We study the dynamics of dilute micro-size inertial particles in turbulent curved pipe flows of different curvature by means of direct numerical simulations with one-way coupled Lagrangian particle tracking. The focus of this work is on the first and second order moments of the velocity and acceleration of the particulate phase, relevant statistics for any modelling effort, whereas the particle distribution is analysed in a previous companion paper. The aim is to understand the role of the cross-stream secondary motions (Dean vortices) on the particle dynamics. We identify the mean Dean vortices associated to the motion of the particles and show that these are moved towards the side-walls and, interestingly, more intense than those of the mean flow. Analysis of the streamwise particle flux reveals a substantial increase due to the secondary motions that brings particles towards the pipe core while moving them towards the outer bend. The in-plane particle flux, most intense in the flow viscous sub-layer along the side walls, increases with particle inertia and pipe curvature. The particle reflections at the outer bend, previously observed also in other strongly curved configurations, locally alter the particle axial and wall-normal velocity and increase turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayyalasomayajula, S., Gylfason, A., Collins, L., Bodenschatz, E., Warhaft, Z.: Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97(14), 144,507 (2006)

    Article  Google Scholar 

  2. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  Google Scholar 

  3. Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S., Toschi, F.: Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349–358 (2006)

    Article  MATH  Google Scholar 

  4. Bernardini, M., Pirozzoli, S., Orlandi, P.: The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Int. J. Multiphase Flow 51, 55–64 (2013)

    Article  Google Scholar 

  5. Boersma, B.J., Nieuwstadt, F.T.M.: Large-eddy simulation of turbulent flow in a curved pipe. J. Fluid Eng. 118, 248 (1996)

    Article  Google Scholar 

  6. Eaton, J., Fessler, J.: Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 20, 169–209 (1994)

    Article  MATH  Google Scholar 

  7. Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 Web page. http://nek5000.mcs.anl.gov (2008)

  8. Gerashchenko, S., Sharp, N., Neuscamman, S., Warhaft, Z.: Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255–281 (2008)

    Article  MATH  Google Scholar 

  9. Huang, X., Durbin, P.: Particulate dispersion in a turbulent serpentine channel. Flow Turb. Combust. 85(3–4), 333–344 (2010)

    Article  MATH  Google Scholar 

  10. Huang, X., Durbin, P.: Particulate mixing in a turbulent serpentine duct. Phys. Fluids 24 (2012)

  11. Hüttl, T.J., Friedrich, R.: Influence of curvature and torsion on turbulent flow in helically coiled pipes. Int. J. Heat Fluid Flow 21(3), 345–353 (2000)

    Article  Google Scholar 

  12. Hüttl, T.J., Friedrich, R.: Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput. Fluids 30(5), 591–605 (2001)

    Article  MATH  Google Scholar 

  13. Lavezzo, V., Soldati, A., Gerashchenko, S., Warhaft, Z., Collins, L.: On the role of gravity and shear on inertial particle accelerations in near-wall turbulence. J. Fluid Mech. 658, 229–246 (2010)

    Article  MATH  Google Scholar 

  14. Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiphase Flow 29(6), 1017–1038 (2003)

    Article  MATH  Google Scholar 

  15. Noorani, A.: Lagrangian particles in turbulence and complex geometries. Tech. rep., KTH, Mechanics. Licenciate Thesis (2014)

  16. Noorani, A., El Khoury, G.K., Schlatter, P.: Evolution of turbulence characteristics from straight to curved pipes. Int. J. Heat Fluid Flow 41, 16–26 (2013)

    Article  Google Scholar 

  17. Noorani, A., Sardina, G., Brandt, L., Schlatter, P.: Particle transport in turbulent curved pipe flows. arXiv preprint arXiv: 1501.1162513(2015)

  18. Olivieri, S., Picano, F., Sardina, G., Iudicone, D., Brandt, L.: The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26(041), 704 (2014)

    Google Scholar 

  19. Picciotto, M., Marchioli, C., Soldati, A.: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17(098), 101 (2005)

    Google Scholar 

  20. Portela, L., Cota, P., Oliemans, R.: Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Tech. 125(2), 149–157 (2002)

    Article  Google Scholar 

  21. Reeks, M.W.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14(6), 729–739 (1983)

    Article  Google Scholar 

  22. Sardina, G., Schlatter, P., Brandt, L., Picano, F., Casciola, C.M.: Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 50–78 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sardina, G., Schlatter, P., Picano, F., Casciola, C.M., Brandt, L., Henningson, D.S.: Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584–596 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schiller, L., Naumann, A.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver. Deut. Ing. 77, 318–320 (1933)

    Google Scholar 

  25. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009)

    Article  MathSciNet  Google Scholar 

  26. Vashisth, S., Kumar, V., Nigam, K.: A review on the potential applications of curved geometries in process industry. Ind. Eng. Chem. Res. 47(10), 3291–3337 (2008)

    Article  Google Scholar 

  27. Vinkovic, I., Aguirre, C., Ayrault, M., Simoëns, S.: Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Bound.-Layer Meteorol. 121(2), 283–311 (2006)

    Article  Google Scholar 

  28. Wu, Z., Young, J.B.: The deposition of small particles from a turbulent air flow in a curved duct. Int. J. Multiphase Flow 44, 34–47 (2012)

    Article  Google Scholar 

  29. Yeo, K., Kim, B., Lee, C.: On the near-wall characteristics of acceleration in turbulence. J. Fluid Mech. 659, 405–419 (2010)

    Article  MATH  Google Scholar 

  30. Young, J., Leeming, A.: A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340(1), 129–159 (1997)

    Article  MATH  Google Scholar 

  31. Zamansky, R., Vinkovic, I., Gorokhovski, M.: Acceleration statistics of solid particles in turbulent channel flow. Phys. Fluids 23(11), 113,304 (2011)

    Article  Google Scholar 

  32. Zonta, F., Marchioli, C., Soldati, A.: Particle and droplet deposition in turbulent swirled pipe flow. Int. J. Multiphase Flow 56, 172–183 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azad Noorani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorani, A., Sardina, G., Brandt, L. et al. Particle Velocity and Acceleration in Turbulent Bent Pipe Flows. Flow Turbulence Combust 95, 539–559 (2015). https://doi.org/10.1007/s10494-015-9638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9638-9

Keywords

Navigation