Skip to main content
Log in

Revisiting URANS Computations of the Backward-facing Step Flow Using Second Moment Closures. Influence of the Numerics

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Previous studies have shown that Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations are able to reproduce the vortex shedding behind a backward-facing step. The aim of the present work is to investigate not only the quantitative predictions of the URANS methodology concerning the characteristic frequencies, but also the amplitude of the energy of the resolved eddies, by using the Elliptic Blending Reynolds Stress Model. This innovative low-Reynolds number second moment closure reproduces the non-viscous, non-local blocking effect of the wall on the Reynolds stresses, and it is compared to the standard k − ε and LRR models using wall-functions. Consistent with previous studies, in the 2D computations shown in the present article, the vortex shedding is captured with the correct Strouhal number, when second moment closures are used. To complete these previous analyses, we particularly focus here on the energy contained in the unsteady, resolved part and its dependency on the numerical method. This energy is less than 5% of the total energy and is strongly dependent on the mesh. Using a refined mesh, surprisingly, a steady solution is obtained. It is shown that this behaviour can be linked to the very small spatial oscillations at the step corner, produced by numerical dispersion, which act as perturbations that are sufficient to excite the natural mode of the shear layer, when the local Peclet number, comparing convection and diffusion effects, is high enough. This result suggests that URANS is not appropriate to quantitatively predict the amplitude of the large-scale structures developing in separated shear-layers, and that URANS results must be interpreted with care in terms of temporal variations of forces, temperatures, etc., in industrial applications using marginally fine meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Kondoh, T., Nagano, Y.: New turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows–1. Flow field calculations. Int. J. Heat Mass Transfer 37(1), 139–154 (1994)

    Article  MATH  ADS  Google Scholar 

  2. Archambeau, F., Méchitoua, N., Sakiz, M.: Code Saturne: a finite volume code for the computation of turbulent incompressible flows – industrial applications. Int. J. on Finite Volume, Electronical edn. http://averoes.math.univ-paris13.fr/html, ISSN 1634(0655) (2004)

  3. Borello, D., Hanjalić, K., Rispoli, F.: Prediction of cascade flows with innovative second-moment closure. J. Fluids Eng. 127(6), 1059–1070 (2005)

    Article  Google Scholar 

  4. Bosch, G., Rodi, W.: Simulation of vortex shedding past a square cylinder with different turbulence models. Int. J. Numer. Methods Fluids 28, 601–616 (1998)

    Article  MATH  ADS  Google Scholar 

  5. Carpy, S., Manceau, R.: Turbulence modelling of statistically periodic flows: synthetic jet into quiescent air. Int. J. Heat Fluid Flow 27(5), 756–767 (2006)

    Article  Google Scholar 

  6. Choi, Y.D., Han, S.H., An, J.S., Shin, J.K.: Predictions of turbulent heat transfer of super-critical carbon dioxide flow in a square duct with an elliptic-blending second moment closure. In: Proc. 4th International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, 27–29 June 2005

  7. Craft, T.J.: Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows. Int. J. Heat Fluid Flow 19(5), 541–548 (1998)

    Article  Google Scholar 

  8. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)

    Article  ADS  Google Scholar 

  9. Driver, D., Seegmiller, H.L.: Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J. 23, 163–171 (1985)

    Article  ADS  Google Scholar 

  10. Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time dependent behavior of a reattaching shear layer. AIAA J. 25, 914–919 (1987)

    Article  ADS  Google Scholar 

  11. Durbin, P.A.: Near-wall turbulence closure modeling without “damping functions”. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)

    MATH  Google Scholar 

  12. Durbin, P.A.: A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

    Article  ADS  Google Scholar 

  13. Durbin, P.A.: Separated flow computations with the \(k\!-\!\varepsilon\!-\!{\overline{v^2}}\) model. AIAA J. 33, 659–664 (1995)

    Article  ADS  Google Scholar 

  14. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Gatski, T.B. Rumsey, C.L., Manceau, R.: Current trends in modeling research for turbulent aerodynamic flows. Philos. Trans. R. Soc. Lond. A 365(1859), 2389–2418 (2007)

    ADS  MathSciNet  Google Scholar 

  16. Hanjalić, K., Jakirlić, S.: Contribution towards the second-moment closure modelling of separating turbulent flows. Comput. Fluids 27(2), 137–156 (1998)

    Article  MATH  Google Scholar 

  17. Iaccarino, G., Ooi, A., Durbin, P.A., Behnia, M.: Reynolds averaged simulation of unsteady separated flow. Int. J. Heat Fluid Flow 24, 147–156 (2003)

    Article  Google Scholar 

  18. Johansson, S., Davidson, L., Olsson, E.: Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a k − ε turbulence model. Int. J. Numer. Methods Fluids 16(10), 859–878 (1993)

    Article  MATH  ADS  Google Scholar 

  19. Kiya, M., Sasaki, K.: Structure of a turbulent seperation bubble. J. Fluid Mech. 137, 83–113 (1983)

    Article  ADS  Google Scholar 

  20. Lardeau, S., Leschziner, M.A.: Unsteady RANS modelling of wake-blade interaction: computational requirements and limitations. Comput. Fluids 34, 3–21 (2005)

    Article  MATH  Google Scholar 

  21. Lasher, W.C., Taulbee, D.B.: On the computation of turbulent backstep flow. Int. J. Heat Fluid Flow 13, 30–40 (1992)

    Article  ADS  Google Scholar 

  22. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flow. Comput. Methods Appl. Mech. Eng. 3, 269 (1974)

    Article  MATH  Google Scholar 

  23. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  ADS  Google Scholar 

  24. Leschziner, M.A.: The flow in a channel with periodic ‘hills’ on one wall. In: Manceau, R., Bonnet, J.-P., Leschziner, M.A., Menter, F. (eds.) Proc. 10th ERCOFTAC (SIG-15)/IAHR/QNET-CFD Workshop on Refined Turbulence Modelling. Laboratoire d’études aérodynamiques, UMR CNRS 6609, Université de Poitiers, Poitiers (http://labo.univ-poitiers.fr/informations-lea/Workshop-Ercoftac-2002/Index.html) (2002)

  25. Manceau, R.: An improved version of the elliptic blending model. Application to non-rotating and rotating channel flows. In: Proc. 4th International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, 27–29 June 2005

  26. Manceau, R., Hanjalić, K.: Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14(2), 744–754 (2002)

    Article  ADS  Google Scholar 

  27. Manceau, R., Wang, M., Laurence, D.: Inhomogeneity and anisotropy effects on the redistribution term in Reynolds-averaged Navier-stokes modelling. J. Fluid Mech. 438, 307–338 (2001)

    Article  MATH  ADS  Google Scholar 

  28. Parneix, S., Laurence, D., Durbin, P.A.: A procedure for using DNS databases. J. Fluids Eng. 120, 40–47 (1998)

    Article  Google Scholar 

  29. Rotta, J.C.: Statistische Theorie nicht homogener Turbulenz. Z. Phys. 129, 547–572 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modeling the pressure-strain correlation of turbulence: an invariant dynamical system approach. J. Fluid Mech. 227, 245–272 (1991)

    Article  MATH  ADS  Google Scholar 

  31. Thielen, L., Hanjalić, K., Jonker, H., Manceau, R.: Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int. J. Heat Mass Transfer 48(8), 1583–1598 (2005)

    Article  Google Scholar 

  32. Wee, D., Yi, T., Annaswamy, A., Ghoniem, A.F.: Self-sustained oscillations and vortex shedding in backward-facing step flows: simulation and linear stability analysis. Phys. Fluids 16(9), 3361–3373 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadai-Ghotbi, A., Manceau, R. & Borée, J. Revisiting URANS Computations of the Backward-facing Step Flow Using Second Moment Closures. Influence of the Numerics. Flow Turbulence Combust 81, 395–414 (2008). https://doi.org/10.1007/s10494-008-9140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9140-8

Keywords

Navigation