Skip to main content
Log in

Comparison of Two Unsteady Intermittency Models for Bypass Transition Prediction on a Turbine Blade Profile

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present paper evaluates two unsteady transition modelling approaches: the prescribed unsteady intermittency method PUIM, developed at Cambridge University and the dynamic unsteady intermittency method developed at Ghent University. The methods are validated against experimental data for the N3-60 steam turbine stator profile for steady and for unsteady inlet flow conditions. The characteristic features of the test case are moderately high Reynolds number and high inlet turbulence intensity, which causes bypass transition. The tested models rely both on the intermittency parameter and are unsteady approaches. In the prescribed method, the time-dependent intermittency distribution is obtained from integral relations. In the dynamic method, the intermittency distribution follows from time-dependent differential equations. For unsteady computations, self-similar wake profiles are prescribed at the inlet of the computational domain. Joint validation of the prescribed and the dynamic unsteady intermittency models against experimental data shows that both methods are able to reproduce the global features of the periodical evolution of the boundary layer under the influence of a periodically impinging wake. The overall quality of the dynamic method is better than that of the prescribed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zarzycki, R., Elsner, W.: The effect of wake parameters on the transitional boundary layer on a turbine blade. IMechE Part A. J. Power Energy 219, 471–480 (2005)

    Google Scholar 

  2. Watanabe, E., Tanaka, Y., Nakano, T., Ohyama, H., Tanaka, K., Miyawaki, T., Tsutsumi, M., Shinohara, T.: Development of a new high efficiency steam turbine, Mitsubishi Heavy Industries Ltd. Tech. Rev. 40, (4), 1–6 (2003)

    Google Scholar 

  3. Cardamone, P., Martinstetter, M., Pfitzner, M., Lötzerich, M.: Aerodynamic Optimisation of HP turbine cascade blades for heavy duty gas turbine applications, Part 1: Experimental Investigations, Proc. of 17th International Symposium on Airbreathing Engines—ISABE, Munich 2005

  4. Jacobs, R.G., Durbin, P.A.: Simulations of bypass transition. J. Fluid Mech. 428, 185–212 (2001)

    Article  MATH  ADS  Google Scholar 

  5. Elsner, W.: Influence of nonstationary interactions on laminar-turbulent transition process on a turbine blade profile. CzUT Publishing, Ser. Monographs, vol.103, Czestochowa (2004)

  6. Addison, J.S., Hodson, H.P.: Modeling of unsteady transition boundary layers. ASME J. Turbomach. 114, 580–589 (1992)

    Article  Google Scholar 

  7. Schulte, V., Hodson, H.P.: Prediction of the becalmed region for LP turbine profile design. ASME J. Turbomach. 120, 839–846 (1998)

    Google Scholar 

  8. Ramesh, O.N., Hodson, H.P.: A new intermittency model for incorporating the calming effect. Proc. of 3th European Turbomachinery Conference, IMechE, Cambridge University Press, 243–258 (1999)

  9. Vilmin, S., Savill, M.A., Hodson, H.P., Dawes, W.N.: Predicting wake–passing transition in turbomachinery using an intermittency-conditioned modelling approach. 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Paper AIAA-2003-3995 (2003)

  10. Lodefier, K., Merci, B., De Langhe, C, Dick, E.: Intermittency based RANS bypass transition modelling. Prog. Comput. Fluid Dyn. 6, 68–78 (2006)

    Article  Google Scholar 

  11. Lodefier, K., Dick, E.: Modelling of unsteady transition in low-pressure turbine blade flows with two dynamic intermittency equations. Flow Turbul. Combust. 76, 103–132 (2006)

    Article  Google Scholar 

  12. Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation. ASME J. Turbomach. 125, 455–464 (2003)

    Article  Google Scholar 

  13. Suzen, Y.B., Huang, P.G.: Numerical simulation of unsteady wake/blade interactions in low-pressure turbine flows using an intermittency transport equation. ASME J. Turbomach. 127, 431–444 (2005)

    Article  Google Scholar 

  14. Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)

    Article  MATH  Google Scholar 

  15. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-based transition model using local variables—Part I: model formulation, Part 2: test cases and industrial applications. ASME J. Turbomach. 128, 413–434 (2006)

    Article  Google Scholar 

  16. Vicedo, J., Vilmin, S., Dawes, W.N., Savill, A.M.: Intermittency transport modelling of separated flow transition. ASME J. Turbomach. 126, 424–431 (2004)

    Article  Google Scholar 

  17. Data Base of Transition Modeling Test Cases (TC4D000); web page: http://ercoftac.mech.surrey.ac.uk/

  18. Elsner, W., Vilmin, S., Drobniak, S., Piotrowski, W.: Experimental analysis and prediction of wake-induced transition in turbomachinery. ASME Turbo Conference and Exhibit 2004, Vienna, Paper GT2004–53757 (2004)

  19. Lodefier, K., Dick, E., Piotrowski, W., Elsner, W.: Modelling of wake-induced transition with dynamic description of intermittency. Proc. of 6th European Turbomachinery Conference, Lille, 730–739 (2005)

  20. Gostelow, J.P., Blunden, A.R., Walker, G.J.: Effects of free-stream turbulence and adverse pressure gradients on boundary layer transition. ASME J. Turbomach. 116, 392–404 (1994)

    Article  Google Scholar 

  21. Solomon, W.J., Walker, G.J., Gostelow, J.P.: Transition length prediction for flows with rapidly changing pressure gradients. ASME J. Turbomach. 118, 744–751 (1996)

    Article  Google Scholar 

  22. Mayle, R.E.: The role of laminar-turbulent transition in gas turbine engines. ASME J. Turbomach. 113, 509–537 (1991)

    Article  Google Scholar 

  23. Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers—the effects of turbulence, pressure gradient and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980)

    Article  Google Scholar 

  24. Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25, 1347–1355 (1987)

    Article  MATH  ADS  Google Scholar 

  25. Yang, Z., Shih, T.H.: New time scale based k–ε model for near-wall turbulence. AIAA J. 31, 1191–1198 (1993)

    Article  MATH  ADS  Google Scholar 

  26. Menter, F.R.: two-equation eddy-viscosit turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  ADS  Google Scholar 

  27. Medic, G., Durbin, P.A.: Toward improved prediction of heat transfer on turbine blades. ASME J. Turbomach. 124, 187–192 (2002)

    Article  Google Scholar 

  28. Cho, R., Chung, M.K.: A k–ε–γ equation turbulence model. J. Fluid Mech. 237, 301–322 (1992)

    Article  MATH  ADS  Google Scholar 

  29. Steelant, J., Dick, E.: Modelling of laminar-turbulent transition for high free-stream turbulence. J. Fluids Eng. 123, 22–30 (2001)

    Article  Google Scholar 

  30. Lardeau, S., Leschziner, M.A.: Unsteady RANS modelling of wake-blade interaction: computational requirements and limitations. Comput. Fluids 34, 3–21 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotrowski, W., Lodefier, K., Kubacki, S. et al. Comparison of Two Unsteady Intermittency Models for Bypass Transition Prediction on a Turbine Blade Profile. Flow Turbulence Combust 81, 369–394 (2008). https://doi.org/10.1007/s10494-008-9136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9136-4

Keywords

Navigation