Skip to main content
Log in

Time-resolved measurements of hydroxyl in stable and extinguishing partially premixed turbulent opposed-jet flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Quantitative hydroxyl time-series measurements from a set of stable and extinguishing turbulent opposed-flow partially premixed CH4/air flames are used to investigate the effect of Reynolds number and fuel-side equivalence ratio on the structure of turbulent partially premixed flames. The hydroxyl (OH) integral time scale, computed from the autocorrelation function, is used to characterize OH fluctuations and is found to reach a minimum at the axial location of peak OH. Analyses of the duration of and period between bursts in the OH time series are used to examine the dynamics of flame-front motion. In general, with increasing Reynolds number (Re), the distribution in OH burst times shifts towards smaller time scales. A hydroxyl intermittency parameter is also defined from the bursts to quantify the presence or absence of OH. For flames with the same fuel-side equivalence ratio, the hydroxyl intermittency at peak OH remains almost constant when going from stable to extinguishing flames. However, histograms portray an increase in burst separation times for flames displaying occasional extinction events. Hydroxyl time series for a partially premixed flame at a fuel-side equivalence ratio of 2.0 and Re = 6650 are synthesized by using mixture-fraction simulations based on calculated state relationships for OH versus mixture fraction (f). The laminar-flamelet model is employed to explore relations between OH and f so as to predict trends in mixture-fraction time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renfro, M.W., Sivathanu, Y.R., Gore, J.P., King, G.B., Laurendeau, N.M.: Proc. Combust. Inst. 27, 1015–1022 (1998)

    Google Scholar 

  2. Renfro, M.W., King, G.B., Laurendeau, N.M.: Combust. Flame 122, 130–150 (2000)

    Article  Google Scholar 

  3. Kounalakis, M.E., Gore, J.P., Faeth, G.M.: J. Heat Trans. 111, 1021–1030 (1989)

    Article  Google Scholar 

  4. McQuay, M.Q., Cannon, S.M.: Combust. Sci. Technol. 119, 13–33 (1996)

    Article  Google Scholar 

  5. Dibble, R.W., Hollenbach, R.E.: Proc. Combust. Inst. 18, 1489–1499 (1981)

    Google Scholar 

  6. Ji, J., Sivathanu, Y.R., Gore, J.P.: Proc. Combust. Inst. 28, 391–398 (2000)

    Google Scholar 

  7. Renfro, M.W., Guttenfelder, W.A., King, G.B., Laurendeau, N.M.: Combust. Flame 123, 389–401 (2000)

    Article  Google Scholar 

  8. Wang, G.H., Clemens, N.T., Varghese, P.L.: Proc. Combust. Institute 30, 691–699 (2004)

    Article  Google Scholar 

  9. Renfro, M.W., Chaturvedy, A., King, G.B., Laurendeau, N.M., Kempf, A., Dreizler, A., Janicka, J.: Combust. Flame 139, 142–151 (2004)

    Article  Google Scholar 

  10. Geyer, D., Dreizler, A., Janicka, J., Permana, A.D., Chen, J.Y.: Proc. Combust. Inst. 30, 711–718 (2005)

    Article  Google Scholar 

  11. Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Proc. Combust. Inst. 30, 681–690 (2005)

    Article  Google Scholar 

  12. Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Combust. Flame 92, 377–395 (1993)

    Article  Google Scholar 

  13. Cho, P., Law, C.K., Cheng, R.K., Shepherd, I.G.: Proc. Combust. Inst. 22, 739–745 (1988)

    Google Scholar 

  14. Cheng, R.K., Shepherd, I.G., Gökalp, I.: Combust. Flame 78, 205–221 (1989)

    Article  Google Scholar 

  15. Lindstedt, R.P., Luff, D., Whitelaw, J.H.: Flow Turbulence and Combustion 74, 169–194 (2005)

    Article  Google Scholar 

  16. Yoshida, A., Igarashi, T., Kotani, Y.: Combust. Flame 109, 66–681 (1997)

    Article  Google Scholar 

  17. Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Combust. Flame 91, 40–54 (1992)

    Article  Google Scholar 

  18. Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Combust. Flame 91, 55–64 (1992)

    Article  Google Scholar 

  19. Ikeda, Y., Kojima, J., Nakajima, T., Akamatsu, F., Katsuki, M.: Proc. Combust. Inst. 28, 343–350 (2000)

    Article  Google Scholar 

  20. Kitajima, A., Ueda, T., Matsuo, A., Mizomoto, M.: Combust. Flame 121, 301–311 (2000)

    Article  Google Scholar 

  21. Im, H., Chen, J.H., Chen, J.Y.: Combust. Flame 118, 204–212 (1999)

    Article  Google Scholar 

  22. Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Combust. Flame 143, 524–548 (2005)

    Article  Google Scholar 

  23. Omar, S.K., Geyer, D., Dreizler, A., Janicka, J.: Progress in Computational Fluid Dynamics 4(3–5), 241–249 (2004)

    Article  Google Scholar 

  24. Renfro, M.W., Gore, J.P., Laurendeau, N.M.: Combust. Flame 129, 120–135 (2002)

    Article  Google Scholar 

  25. Renfro, M.W., Pack, S.D., King, G.B., Laurendeau, N.M.: Appl. Phys. B 69, 137–146 (1999)

    Article  ADS  Google Scholar 

  26. Böhm, B., Geyer, D., Dreizler, A., Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W.: Submitted to 31st International Symposium on Combustion (2006)

  27. Bilger, R.W.: Proc. Combust. Inst. 22, 475–488 (1988)

    Google Scholar 

  28. Luque, J, Crosley, D.R.: LIFBASE: Database and spectral simulation, version 2.0.2. SRI International Report MP 99–009 (1999)

  29. Pack, S.D., Renfro, M.W., King, G.B., Laurendeau, N.M.: Combust. Sci. Tech. 140, 405–425 (1998)

    Article  Google Scholar 

  30. Renfro, M.W., King, G.B., Laurendeau, N.M.: Appl. Optics 38, 4596–4608 (1999)

    Article  ADS  Google Scholar 

  31. Lutz, A.E., Kee, R.J., Grcar, J.F.: OPPDIF: A Fortran Program for Computing Opposed-flow Diffusion Flames. Sandia National Laboratories Report No. SAND96–8243 (1996)

  32. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, Jr., V.V., Qin, Z.:http://www.me.berkeley.edu/gri\_mech/

  33. Renfro, M.W., Gore, J.P., King, G.B., Laurendeau, N.M.: AIAA 38(7), 1230–1236 (2000)

    Article  ADS  Google Scholar 

  34. Blevins, L.G., Gore, J.P.: Combust. Flame 116, 546–566 (1999)

    Article  Google Scholar 

  35. Tanoff, M.A., Smooke, M.D., Osborne, R.J., Brown T.M., Pitz, R.W.: Proc. Combust. Inst. 26, 1121–1128 (1996)

    Google Scholar 

  36. Lee, U.D., Oh, K.C., Shin, H.D., Lee, K.H.: Combust. Flame 141, 186–190 (2005)

    Article  Google Scholar 

  37. Birch, A.D., Brown, D.R., Dodson, M.G., Thomas, J.R.: J. Fluid Mech. 88, 431–450 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna K. Venkatesan.

Additional information

“Time-Series Measurements in Turbulent Opposed-Jet Flames" is submitted for consideration as a full length article to Flow Turbulence and Combustion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W. et al. Time-resolved measurements of hydroxyl in stable and extinguishing partially premixed turbulent opposed-jet flames. Flow Turbulence Combust 76, 257–278 (2006). https://doi.org/10.1007/s10494-006-9014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9014-x

Keywords

Navigation