Skip to main content

Advertisement

Log in

Evaluation of Tarsonemus bilobatus and Podosphaera xanthii as suitable resources for Proprioseiopsis mexicanus in cucurbit systems in the Southeast USA

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Tritrophic relationships involving tarsonemids and predatory phytoseiids are common in a variety of agroecosystems, but due to the wide range of diets in both families, it is necessary to understand what food resources they are consuming to determine potential impact on crops. We investigated a frequent association of cucurbit powdery mildew (Podosphaera xanthii), Tarsonemus bilobatus, and Proprioseiopsis mexicanus in watermelon and pumpkin fields to determine whether P. mexicanus is consuming either or both of the other organisms. We also examined developmental and reproductive capability of P. mexicanus on these diets. If P. mexicanus is an effective predator of T. bilobatus, it may also be useful in controlling pest tarsonemids, such as broad mites. Proprioseiopsis mexicanus either starved or escaped from arenas rather than consume P. xanthii. When consuming T. bilobatus, P. mexicanus females developed from larva to adult in ca. 3 days. On this diet, the preoviposition period was ca. 2 days and P. mexicanus laid 1.7 eggs/day. These results are comparable to some of the higher-quality non-prey resources investigated in the literature. Starved female P. mexicanus consumed 6.5 T. bilobatus of mixed stages in 1 h. This study provides support for further research into the importance of non-pest tarsonemids as a resource to maintain the presence of generalist predatory mites as an early-intervention natural enemy. Further work should examine the efficacy of P. mexicanus as a natural enemy of economically important pest tarsonemids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Datasets and supplementary materials are available at figshare.com.

Code availability

R Statistical Software base package.

References

  • Abou-Setta MM, Fouly AH, Childers CC (1997) Biology of Proprioseiopsis rotendus (Acari: Phytoseiidae) reared on Tetranychus urticae (Acari: Tetranychidae) or pollen. Fla Entomol 50:27–34. https://doi.org/10.2307/3495973

    Article  Google Scholar 

  • Akyazi R, Welbourn C, Liburd OE (2021) Mite species (acari) on blackberry cultivars in organic and conventional farms in Florida and Georgia, USA. Acarologia 6:31–45. https://doi.org/10.24349/acarologia/20214414

    Article  Google Scholar 

  • Bakker FM, Klein ME (1992) Transtrophic interactions in cassava. Exp Appl Acarol 14:293–311

    Article  Google Scholar 

  • Beer RE (1954) A revision of the Tarsonemidae of the Western Hemisphere (Order Acarina). Univ Kans Sci Bull 36:1091–1387

    Google Scholar 

  • Chant DA (1959) Phytoseiid mites (Acarina: Phytoseiidae). Mem Ent Soc Can 91(S12):5–166. https://doi.org/10.4039/entm9112fv

    Article  Google Scholar 

  • Childers CC, Ueckermann EA (2020) The Tetranychoidea, Tarsonemidae and Tydeoidea mite complex on Florida citrus between 1954 and 2014: pests or beneficials? Syst Appl Acarol 25:1257–1278. https://doi.org/10.11158/saa.25.7.8

    Article  Google Scholar 

  • Croft B, Blackwood J, McMurtry J (2004) Classifying life-style types of phytoseiid mites: diagnostic traits. Exp Appl Acarol 33:247–260. https://doi.org/10.1023/B:APPA.0000038622.26584.82

    Article  Google Scholar 

  • Croft B, Pratt P, Koskela G, Kaufman D (1998) Predation, reproduction, and impact of phytoseiid mites (Acari: Phytoseiidae) on cyclamen mite (Acari: Tarsonemidae) on strawberry. J Econ Entomol 91:1307–1314. https://doi.org/10.1093/jee/91.6.1307

    Article  Google Scholar 

  • de Coss-Romero M, Peña JE (1998) Relationship of broad mite (Acari: Tarsonemidae) to host phenology and injury levels in Capsicum annuum. Fla Entomol 81:515–526. https://doi.org/10.2307/3495950

    Article  Google Scholar 

  • Dhooria MS, Bindra OS (1977) Polyphagotarsonemus latus (Banks) a mite pest of chilli and potato in Punjab. Acarology Newsletter 4:7–9

    Google Scholar 

  • Duso C, Pozzebon A, Capuzzo C, Bisol PM, Otto S (2003) Grape downy mildew spread and mite seasonal abundance in vineyards: Evidence for the predatory mites Amblyseius andersoni and Typhlodromus pyri. Biol Control 27:229–241

    Article  Google Scholar 

  • Easterbrook M, Fitzgerald J, Solomon M (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius)(Acari: Phytoseiidae). Exp Appl Acarol 25:25–36. https://doi.org/10.1023/A:1010685903130

    Article  CAS  PubMed  Google Scholar 

  • Farfan MA, Coffey J, Schmidt-Jeffris RA (2021) Suitability of food resources for Proprioseiopsis mexicanus, a potentially important natural enemy in eastern USA agroecosystems. Exp Appl Acarol 84:121–134. https://doi.org/10.1007/s10493-021-00622-6

    Article  CAS  PubMed  Google Scholar 

  • Farfan MA, Schmidt-Jeffris RA (2019) Biodiversity of Phytoseiidae (Acari: Mesostigmata) of annual specialty crop systems: the current state of knowledge worldwide and the need for study in North America. In: Skvarla MJ, Ochoa R, Rodrigues JCV, Hutcheson HJ (eds) Contemporary acarology. Springer, Cham, pp 93–117

    Chapter  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Tarsonemidae. In: Gerson U, Smiley RL, Ochoa R (eds) Mites (Acari) for pest control. Blackwell Publishing, Hoboken, NJ, pp 247–249

    Chapter  Google Scholar 

  • James DG (1993) Pollen, mould mites and fungi: improvements to mass rearing of Typhlodromus doreenae and Amblyseius victoriensis. Exp Appl Acarol 17:271–276. https://doi.org/10.1007/BF02337276

    Article  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press.

  • Jovicich E, Cantliffe D, Osborne L, Stoffella P, Simonne E, Mason P, David R (2008) Release of Neoseiulus californicus on pepper transplants to protect greenhouse-grown crops from early broad mite (Polyphagotarsonemus latus) infestations. Proceedings of the third international symposium on biological control of arthropods, Christchurch, New Zealand.

  • Knisley CB, Denmark HA (1978) New phytoseiid mites from successional and climax plant communities in New Jersey. Fla Entomol 61:5–17. https://doi.org/10.2307/3494423

    Article  Google Scholar 

  • Li L, Jiao R, Yu L, He XZ, He L, Xu C, Zhang L, Liu J (2018) Functional response and prey stage preference of Neoseiulus barkeri on Tarsonemus confusus. Syst Appl Acarol 23:2244–2258. https://doi.org/10.11158/saa.23.11.16

    Article  Google Scholar 

  • Lindquist EE (1972) A new species of Tarsonemus from stored grain (Acarina: Tarsonemidae). Can Entomol 104:1699–1708. https://doi.org/10.4039/Ent1041699-11

    Article  Google Scholar 

  • Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata (2012/05/31 ed., Vol. 118). Cambridge University Press.

  • Lotfollahi P, Irani-Nejad KH (2010) New records of tarsonemid mites from alfalfa fields in northwest of east Azerbaijan province, Iran (Acari). Munis Entomol Zool 5:538–542

    Google Scholar 

  • McMurtry JA, Croft B (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. https://doi.org/10.1146/annurev.ento.42.1.291

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, De Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320. https://doi.org/10.11158/saa.18.4.1

    Article  Google Scholar 

  • McMurtry JA, Scriven GT (1964) Studies on the feeding, reproduction, and development of Amblyseius hibisci (Acarina: Phytoseiidae) on various food substances. Ann Entomol Soc Am 57:649–655. https://doi.org/10.1093/aesa/57.5.649

    Article  Google Scholar 

  • Michailides T, Morgan D, Mitchum E, Crisosto C (1994) Occurrence of moldy core and core rot of fungi apple in California. KAC Plant Prot Quart 3:5–7

    Google Scholar 

  • Momen F, Abdelkhader M (2010) Fungi as food source for the generalist predator Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae). Acta Phytopathol Entomol Hung 45:401–409

    Article  Google Scholar 

  • Na S, Cho M, Kim D, Park K, Woo C, Kim K (1998) Survey on the pests of stored garlic. Korean J Appl Entomol 37:65–71

    Google Scholar 

  • Nakao H (1991) Studies on acarid mites (Acari: Astigmata) damaging vegetable plants. Japanese J Appl Entomol Zool 35:303–309. https://doi.org/10.1303/jjaez.35.303

    Article  Google Scholar 

  • Nguyen DT, Than AT, Jonckheere W, Nguyen VH, Van Leeuwen T, De Clercq P (2019) Life tables and feeding habits of Proprioseiopsis lenis (Acari: Phytoseiidae) and implications for its biological control potential in Southeast Asia. Syst Appl Acarol 24:857–865. https://doi.org/10.11158/saa.24.5.9

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68. https://doi.org/10.1023/A:1021559421344

    Article  PubMed  Google Scholar 

  • Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55:253–260. https://doi.org/10.1007/s10526-009-9233-x

    Article  Google Scholar 

  • Nucifora A, Vacante V (2004) Citrus mites in Italy. VII. The family Tarsonemidae. Species collected and notes on ecology. Acarologia 44:49–67

    Google Scholar 

  • Peña J, Ochoa R, Erbe E (2000) Polyphagotarsonemus latus (Acari: Tarsonemidae) research status on citrus. Proc Int Congr Citriculture Orlando, Florida.

  • Peña JE (1990) Relationships of broad mite (Acari: Tarsonemidae) density to lime damage. J Econ Entomol 83:2008–2015. https://doi.org/10.1093/jee/83.5.2008

    Article  Google Scholar 

  • Pozzebon A, Duso C (2008) Grape downy mildew Plasmopara viticola, an alternative food for generalist predatory mites occurring in vineyards. Biol Control 45:441–449. https://doi.org/10.1016/j.biocontrol.2008.02.001

    Article  Google Scholar 

  • Renkema JM, LeFors JA, Johnson DT (2017) First report of broad mite (Acari: Tarsonemidae) on commercial strawberry in Florida. Fla Entomol 100:804–806. https://doi.org/10.1653/024.100.0406

    Article  Google Scholar 

  • Schmidt-Jeffris RA, Coffey JL, Miller G, Farfan MA (2021) Residual activity of acaricides for controlling spider mites in watermelon and their impacts on resident predatory mites. J Econ Entomol 114:818–827. https://doi.org/10.1093/jee/toaa320

    Article  PubMed  Google Scholar 

  • Suski Z (1972) Tarsonemid mites on apple trees in Poland. XI. Field observations on the distribution and significance of Tarsonemidae (Acarina, Hetorostigmata) in apple orchards. Zeszyty Probl Postepow Nauk Roln.

  • Vacacela Ajila HE, Ferreira JAM, Colares F, Oliveira CM, Bernardo AMG, Venzon M, Pallini A (2018) Ricoseius loxocheles (Acari: Phytoseiidae) is not a predator of false spider mite on coffee crops: What does it eat? Exp Appl Acarol 74:1–11. https://doi.org/10.1007/s10493-018-0211-9

    Article  PubMed  Google Scholar 

  • Van der Walt L, Spotts RA, Ueckermann EA, Smit FJ, Jensen T, McLeod A (2011) The association of Tarsonemus mites (Acari: Heterostigmata) with different apple developmental stages and apple core rot diseases. Int J Acarology 37:71–84. https://doi.org/10.1080/01647954.2010.539981

    Article  Google Scholar 

  • van Rijn PCJ, Sabelis MW (1990) Pollen as an alternative food source for predatory mites and its effect on the biological control of thrips in greenhouses. Proc Exp Appl Entomol 1:44–48

    Google Scholar 

  • van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802. https://doi.org/10.1023/A:1006227704122

    Article  Google Scholar 

  • van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679. https://doi.org/10.1890/0012-9658(2002)083[2664:HPBFPF]2.0.CO;2

    Article  Google Scholar 

  • Vangansbeke D, Duarte MV, Merckx J, Benavente A, Magowski WL, Franca SC, Bolckmans K, Wackers F (2020) Impact of a tarsonemid prey mite and its fungal diet on the reproductive performance of a predatory mite. Exp Appl Acarol 83:313–323. https://doi.org/10.1007/s10493-021-00594-7

    Article  CAS  Google Scholar 

  • Walter DE, Lindquist EE, Smith JM, Cook DR, Krantz GW (2009) Order trombidiformes. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, TX, pp 233–420

    Google Scholar 

  • Warburg S, Inbar M, Gal S, Salomon M, Palevsky E, Sadeh A (2019) The effects of a windborne pollen-provisioning cover crop on the phytoseiid community in citrus orchards in Israel. Pest Manag Sci 75:405–412. https://doi.org/10.1002/ps.5129

    Article  CAS  PubMed  Google Scholar 

  • Zemek R (2005) The effect of powdery mildew on the number of prey consumed by Typhlodromus pyri (Acari: Phytoseiidae). J Appl Entomol 129:211–216. https://doi.org/10.1111/j.1439-0418.2005.00947.x

    Article  Google Scholar 

  • Zemek R, Prenerov E (1997) Powdery mildew (Ascomycotina: Erysiphales)—an alternative food for the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Exp Appl Acarol 21:405–414. https://doi.org/10.1023/A:1018427812075

    Article  Google Scholar 

  • Zhang ZQ (2003) Tarsonemid mites. Mites in greenhouses: identification, biology, and control. CABI Publishing, Cambridge, MA, pp 99–126

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the lab of Chandrasekar Kousik (USDA Vegetable Laboratory, Charleston, SC, USA) for providing Podosphaera xanthii conidia used for this experiment. We thank the lab of Anthony Keinath (Clemson University CREC, Charleston, SC, USA) for allowing surveys of their experimental cucurbit fields. We also thank Ron Ochoa (USDA Systematic Entomology Laboratory, Beltsville, MD, USA) for help in identifying T. bilobatus. This work was supported by the NIFA Postdoctoral Fellowship Grant No. 2018-67012-27994/Project accession no. 1015537 from the USDA National Institute of Food and Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Funding

This work was supported by the NIFA Postdoctoral Fellowship grant no. 2018-67012-27994/Project accession no. 1015537 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Material preparation and data collection were performed by MAF and JC. Data analysis was performed by MAF. The first draft of the manuscript was written by MAF and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Monica A. Farfan.

Ethics declarations

Conflict of Interest

All authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farfan, M.A., Coffey, J. & Schmidt-Jeffris, R.A. Evaluation of Tarsonemus bilobatus and Podosphaera xanthii as suitable resources for Proprioseiopsis mexicanus in cucurbit systems in the Southeast USA. Exp Appl Acarol 85, 31–40 (2021). https://doi.org/10.1007/s10493-021-00658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-021-00658-8

Keywords

Navigation