Allan E, Manning P, Alt F et al (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843
PubMed
PubMed Central
Google Scholar
Attwood SJ, Maron M, House ARN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599
Google Scholar
Battigelli JP, Spence JR, Langor DW, Berch SM (2004) Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can J For Res 34:1136–1149
Google Scholar
Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:41–423
Google Scholar
Behan-Pelletier VM, Kanashiro D (2010) Acari in grassland soils of Canada. In: Shorthouse JD, Floate KD (eds) Arthropods of Canadian grasslands (volume 1): ecology and interactions in grassland habitats. Biological Survey of Canada, Ottawa, pp 137–166
Google Scholar
Bell G (1982) The masterpiece of nature. The Evolution and Genetics of Sexuality. University of California Press, California
Google Scholar
Berg NW, Pawluk S (1984) Soil mesofaune studies under different vegetative regimes in Noth Central Alberta. Can J Soil Sci 64:209–223
CAS
Google Scholar
Bird SB, Coulson RN, Fisher RF (2004) Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. For Ecol Manag 202:195–208
Google Scholar
Birkhofer K, Bezemer TM, Bloem J et al (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308
CAS
Google Scholar
Birkhofer K, Schöning I, Alt F et al (2012) General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7(8):e43292. https://doi.org/10.1371/journal.pone.0043292
CAS
Article
PubMed
PubMed Central
Google Scholar
Birkhofer K, Dietrich C, John K, Schorpp Q, Zaitsev AS, Wolters V (2016) Regional conditions and land-use alter the potential contribution of soil arthropods to ecosystem services in grasslands. Front Ecol Evol 3:150. https://doi.org/10.3389/fevo.2015.00150
Article
Google Scholar
Birkhofer K, Gossner MM, Diekötter T et al (2017) Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J Anim Ecol 86:511–520
PubMed
Google Scholar
Bluhm C, Scheu S, Maraun M (2016) Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction. Exp Appl Acarol 68:387–407
PubMed
Google Scholar
Blüthgen N, Dormann CF, Prati D et al (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220
Google Scholar
Chisté M, Mody K, Gossner MM, Simons NK, Köhler G, Weisser WW, Blüthgen N (2016) Losers, winners, and opportunists: how grassland land-use intensity affects orthopteran communities. Ecosphere 7(11):e01545
Google Scholar
Chisté MN, Mody K, Kunz G, Gunczy J, Blüthgen N (2018) Intensive land use drives small-scale homogenization of plant- and leafhopper communities and promotes generalists. Oecologia 186:529–540
PubMed
Google Scholar
Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25
PubMed
Google Scholar
Culman SW, Young-Mathews A, Hollander AD, Ferris H, Sánchez-Moreno S, O`Green AT, Jackson LE (2010) Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landscape Ecol 25:1333–1348
Google Scholar
Déchêne AD, Buddle CM (2009) Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forests. Biodivers Conserv 19:237–256
Google Scholar
Domes K, Scheu S, Maraun M (2007) Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51:1–11
Google Scholar
Ehnes RB, Pollierer MM, Erdmann G, Klarner B, Eitzinger B, Digel C, Ott D, Maraun M, Scheu S, Brose U (2014) Lack of energetic equivalence in forest soil invertebrates. Ecology 95:527–537
PubMed
Google Scholar
Erdmann G, Scheu S, Maraun M (2012) Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57:157–169
PubMed
PubMed Central
Google Scholar
Fischer M, Bossdorf O, Gockel S et al (2010) Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl Ecol. 11:473–485
Google Scholar
Fujikawa T (1988a) Biology of Tectocepheus velatus (Michael) and T. cuspidentatus Knülle. Acarologia 29:307–315
Google Scholar
Fujikawa T (1988b) Biological features of Oppiella nova (Oudemans) in a nature farming field. Edaphologia 38:1–10
Google Scholar
Gossner MM, Lewinsohn T, Kahl T et al (2016) Land-use intensification causes multitrophic homogenisation of grassland communities. Nature 540:266–269. https://doi.org/10.1038/nature20575
CAS
Article
PubMed
Google Scholar
Hope G (2001) The soil ecosystem of an ESSF forest and its response to a range of harvesting disturbances. Extension Note 53. B. C. Ministry of Forests Research Program, Victoria, B. C. Available from http://www.for.gov.bc.ac/hfd/pubs/Docs/En/En53.htm
Ivan O (2009) Diversity and distribution of the oribatid mites (Acari, Oribatida) in some grassland ecosystems from the lower section of the prut meadow (Romania). Agranomie 52:359–364
Google Scholar
Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Article
Google Scholar
Kahl T, Bauhus J (2014) An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nat Conserv 7:15–27
Google Scholar
Kempson D, Llyod M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21
Google Scholar
Klarner B, Ehnes RB, Erdmann G, Eitzinger B, Pollierer MM, Maraun M, Scheu S (2014) Trophic shift of soil animal species with forest type as indicated by stable isotope analysis. Oikos 123:1173–1181
CAS
Google Scholar
Kobayashi K, Hasegawa E (2016) A female-biased sex ratio reduces the twofold cost of sex. Sci Rep 6:23982
CAS
PubMed
PubMed Central
Google Scholar
Kreibich E, Alberti G (2006) Reactions of oribatid mites (Acari: Oribatida) to changed forestry methods in the lowlands of northeastern Germany. Fragm Faun 49:133–151
Google Scholar
Lehmitz R (2014) The oribatid mite community of a German peatland in 1987 and 2012—effects of anthropogenic desiccation and afforestation. Soil Org 86:131–145
Google Scholar
Lehmitz L, Russell D, Hohberg K, Christian A, Xylander WER (2012) Active dispersal of oribatid mites into young soil. Appl Soil Ecol 55:10–19
Google Scholar
Lehtonen J, Jennions MD, Kokko H (2012) The many costs of sex. Trends Ecol Evol 27:172–178
PubMed
Google Scholar
Liiri M, Häsä M, Haimi J, Setälä H (2012) History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services—a microcosm study. Appl Soil Ecol 55:53–61
Google Scholar
Lindo Z, Visser S (2004) Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Can J For Res 34:998–1006
Google Scholar
Luxton M (1981) Studies on the oribatid mites of a Danish beech wood soil. IV Developmental biology. Pedobiologia 21:312–340
Google Scholar
Mangels J, Fiedler K, Schneider FD, Blüthgen N (2017) Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodivers Conserv 26:3385–3405
Google Scholar
Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 3:374–383
Google Scholar
Maraun M, Norton RA, Ehnes RB, Scheu S, Erdmann G (2012) Positive correlation between density and parthenogenetic reproduction in oribatid mites (Acari) supports the structured resource theory of sexual reproduction. Evol Ecol Res 14:311–323
Google Scholar
Maraun M, Caruso T, Hense J et al (2019) Parthenogenetic vs. sexual reproduction in oribatid mite communities. Ecol Evol 9:7324–7332
PubMed
PubMed Central
Google Scholar
Marshall VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manag 133:43–60
Google Scholar
Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge
Google Scholar
Minor M, Volk TA, Norton RA (2004) Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Appl Soil Ecol 25:181–192
Google Scholar
Moritz M (1965) Untersuchungen über den Einflus von Kahlschlagmaßnahmen auf die Zusammensetzung von Hornmilbengemeinschaften (Acari: Oribatai) norddeutscher Laub- und Kiefernmischwälder. Pedobiologia 5:65–101
Google Scholar
Newbold T, Hudson LN, Hill SLL et al (2005) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50
Google Scholar
Norton RA (1990) Acarina: Oribatida. In: Dindal D (ed) Soil biology guide. Wiley, New York, pp 779–803
Google Scholar
Norton RA, Palmer SC (1991) The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R, Murphy PW (eds) The Acari: reproduction, development and life-history strategies. Chapman & Hall, London, pp 107–136
Google Scholar
Oksanen J, Blanchet FG, Friendly M et al. (2019). vegan: community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan
Penone C, Allan E, Soliveres S et al (2019) Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol Lett 22:170–180
PubMed
Google Scholar
R Core Team (2018) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at https://www.R-project.org/
Schatz H, Behan-Pelletier V (2008) Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595:323–328
Google Scholar
Schatz H, Behan-Pelletier VM, OConnor BM, Norton RA (2011) Suborder Oribatida van der Hammen, 1968. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher level classification and survey of taxonomic richness. Zootaxa 3148:141–148
Scheu S, Drossel B (2007) Sexual reproduction prevails in a world of structured resources in short supply. Proc R Soc B 274:1225–1231
CAS
PubMed
Google Scholar
Scheu S, Schulz E (1996) Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodivers Conserv 5:235–250
Google Scholar
Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46
Google Scholar
Seastedt TR, Crossley DA Jr (1981) Microarthropod response following cable logging and clear-cutting in the southern Appalachians. Ecology 62:126–135
Google Scholar
Siepel H (1996) The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodiv Letters 3:26–34
Google Scholar
Siira-Pietikäinen A, Penttinen R, Huhta V (2018) Oribatid mites (Acari: Oribatida) in boreal forest floor and decaying wood. Pedo 52:11–118
Google Scholar
Skubala P (1999) Comparison of adult oribatid mites (Acari, Oribatida) from three mountain forests in Poland: I. Abundance, biomass and species richness. In: Bruin J, van der Geest LPS, Sabelis MW (eds) Ecology and evolution of Acari. Kluwer Academic, Dordrecht, pp 547–555
Google Scholar
Skubala P, Duras M (2008) Do decaying logs represent habitat islands? Oribatid mite communities in dead wood. Anal Zool 58:453–466
Google Scholar
Taberly G (1988) Recherches sur la parthénogenèse thélythoque de deux espèces d’acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). IV Observations sur les mâles ataviques. Acarologia 29:95–107
Google Scholar
Vreeken-Buijs MJ, Hassink J, Brussaard L (1998) Relationship of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil Biol Biochem 30:97–106
CAS
Google Scholar
Wallwork JA (1983) Oribatids in forest ecosystems. Annu Rev Entomol 28:109–130
Google Scholar
Wehner K, Scheu S, Maraun M (2014) Resource availability as driving factor of the reproductive mode in soil microarthropods (Acari, Oribatida). PLoS ONE 9(8):e104243. https://doi.org/10.1371/journal.pone.0104243
CAS
Article
PubMed
PubMed Central
Google Scholar
Wehner K, Norton RA, Blüthgen N, Heethoff M (2016) Specialization of oribatid mites to forest microhabitats—the enigmatic role of litter. Ecosphere 7(3):e01336
Google Scholar
Wehner K, Heethoff M, Brückner A (2018) Sex ratios of oribatid mite assemblages differ among microhabitats. Soil Org 90:13–21
Google Scholar
Weigmann G (2006) Hornmilben (Oribatida). In: Dahl (ed) Tierwelt Deutschlands 76. Goecke and Evers, Keltern
Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227
Google Scholar
Zaitsev AS, Chauvat M, Pflug A, Wolters V (2002) Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biol Biochem 34:1919–1927
CAS
Google Scholar
Zaitsev AS, van Straalen NM, Berg MP (2013) Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landscape Ecol 28:285–296
Google Scholar