Alkishe AA, Peterson AT, Samy AM (2017) Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One 12:e0189092. https://doi.org/10.1371/journal.pone.0189092
CAS
Article
PubMed
PubMed Central
Google Scholar
Belova OA, Burenkova LA, Karganova GG (2012) Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks—Evidence of virus replication and changes in tick behaviour. Ticks Tick-borne Dis 3:240–246. https://doi.org/10.1016/j.ttbdis.2012.05.005
Article
PubMed
Google Scholar
Borgmann-Winter B, Allen D (2020) How the distance between drag-cloth checks affects the estimate of adult and nymphal Ixodes scapularis (Acari: Ixodidae) density. J Med Entomol 57:623–626. https://doi.org/10.1093/jme/tjz179
Article
PubMed
Google Scholar
Daniels TJ, Falco RC, Fish D (2000) Estimating population size and drag sampling efficiency for the blacklegged tick (Acari: Ixodidae). J Med Entomol 37:357–363. https://doi.org/10.1093/jmedent/37.3.357
CAS
Article
PubMed
Google Scholar
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM (2017) Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol 7:114. https://doi.org/10.3389/fcimb.2017.00114
CAS
Article
PubMed
PubMed Central
Google Scholar
Dobson ADM (2013) Ticks in the wrong boxes: assessing error in blanket-drag studies due to occasional sampling. Parasites Vectors 6:344. https://doi.org/10.1186/1756-3305-6-344
Article
PubMed
PubMed Central
Google Scholar
Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhof AM (2013) Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3:29. https://doi.org/10.3389/fcimb.2013.00029
Article
PubMed
PubMed Central
Google Scholar
Estrada-Peña A, Mihalca AD, Petney TN (eds) (2017) Ticks of Europe and North Africa: a guide to species identificationsss. Springer, Cham. https://doi.org/10.1007/978-3-319-63760-0
Book
Google Scholar
Gherman CM, Mihalca AD, Dumitrache MO, Györke A, Oroian I, Sandor M, Cozma V (2012) CO2 flagging—an improved method for the collection of questing ticks. Parasites Vectors 5:125. https://doi.org/10.1186/1756-3305-5-125
Article
PubMed
PubMed Central
Google Scholar
Ginsberg HS, Ewing CP (1989) Comparison of flagging, walking, trapping, and collecting from hosts as sampling methods for northern deer ticks, Ixodes dammini, and lone-star ticks, Amblyomma americanum (Acari: Ixodidae). Exp Appl Acarol 7:313–322. https://doi.org/10.1007/BF01197925
CAS
Article
PubMed
Google Scholar
Gray JS (1985) A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Exp Appl Acarol 1:35–44. https://doi.org/10.1007/BF01262198
CAS
Article
PubMed
Google Scholar
Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009:593232. https://doi.org/10.1155/2009/593232
CAS
Article
PubMed
PubMed Central
Google Scholar
Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pagès F (2014) Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick-borne Dis 5:607–619. https://doi.org/10.1016/j.ttbdis.2014.07.022
Article
PubMed
Google Scholar
Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C (2020) Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasites Vectors 13:176. https://doi.org/10.1186/s13071-020-04049-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Hermann C, Gern L (2010) Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J Med Entomol 47:1196–1204. https://doi.org/10.1603/ME10111
Article
Google Scholar
Hermann C, Gern L (2012) Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology 139:330–337. https://doi.org/10.1017/S0031182011002095
Article
Google Scholar
Hermann C, Gern L (2015) Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasites Vectors 8:6. https://doi.org/10.1186/s13071-014-0526-2
Article
Google Scholar
Jaenson TGT, Hjertqvist M, Bergström T, Lundkvist Å (2012) Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites Vectors 5:184. https://doi.org/10.1186/1756-3305-5-184
Article
PubMed
PubMed Central
Google Scholar
Jensen PM (2000) Host seeking activity of Ixodes ricinus ticks based on daily consecutive flagging samples. Exp Appl Acarol 24:695–708. https://doi.org/10.1023/A:1010640219816
CAS
Article
PubMed
Google Scholar
Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, Johansen B, Brun E, Brun-Hansen H, Westermann S, Larsen I-L, Ytrehus B, Hofshagen M (2014) Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites Vectors 7:11. https://doi.org/10.1186/1756-3305-7-11
Article
PubMed
PubMed Central
Google Scholar
Kenward MG, Roger JH (2009) An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput Stat Data Anal 53:2583–2595. https://doi.org/10.1016/j.csda.2008.12.013
Article
Google Scholar
Kjær LJ, Klitgaard K, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Jensen LM, Bødker R (2020) Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Sci Data 7:238. https://doi.org/10.1038/s41597-020-00579-y
Article
PubMed
PubMed Central
Google Scholar
Kjær LJ, Soleng A, Edgar KS, Lindstedt HEH, Mørk Paulsen K, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Klitgaard K, Bødker R (2019) Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci Rep 9:18144. https://doi.org/10.1038/s41598-019-54496-1
CAS
Article
Google Scholar
Klemola T, Sormunen JJ, Mojzer J, Mäkelä S, Vesterinen EJ (2019) High tick abundance and diversity of tick-borne pathogens in a Finnish city. Urban Ecosyst 22:817–826. https://doi.org/10.1007/s11252-019-00854-w
Article
Google Scholar
Krebs CJ (1989) Ecological Methodology. Harper & Row, New York
Google Scholar
Laaksonen M, Klemola T, Feuth E, Sormunen JJ, Puisto A, Mäkelä S, Penttinen R, Ruohomäki K, Hänninen J, Sääksjärvi IE, Vuorinen I, Sprong H, Hytönen J, Vesterinen EJ (2018) Tick-borne pathogens in Finland: comparison of Ixodes ricinus and I persulcatus in sympatric and parapatric areas. Parasites Vectors 11:556. https://doi.org/10.1186/s13071-018-3131-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Laaksonen M, Sajanti E, Sormunen JJ, Penttinen R, Hänninen J, Ruohomäki K, Sääksjärvi I, Vesterinen EJ, Vuorinen I, Hytönen J, Klemola T (2017) Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I persulcatus and associated pathogens in Finland. Emerg Microbes Infect 6:31. https://doi.org/10.1038/emi.2017.17
CAS
Article
Google Scholar
Lees AD, Milne A (1951) The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus L.). Parasitology 41:189–208. https://doi.org/10.1017/S0031182000084031
CAS
Article
PubMed
Google Scholar
Lefcort H, Durden LA (1996) The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113:97–103. https://doi.org/10.1017/S0031182000066336
Article
PubMed
Google Scholar
Leslie PH, Davis DHS (1939) An attempt to determine the absolute number of rats on a given area. J Anim Ecol 8:94–113. https://www.jstor.org/stable/1255
Li X, Dunley JE (1998) Optimal sampling and spatial distribution of Ixodes pacificus, Dermacentor occidentalis and Dermacentor variabilis ticks (Acari: Ixodidae). Exp Appl Acarol 22:233–248. https://doi.org/10.1023/A:1006018432064
CAS
Article
PubMed
Google Scholar
Mays SE, Houston AE, Trout Fryxell RT (2016) Comparison of novel and conventional methods of trapping ixodid ticks in the southeastern U.S.A. Med Vet Entomol 30:123–134. https://doi.org/10.1111/mve.12160
CAS
Article
PubMed
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, Golovljova I, Jaenson TGT, Jensen J-K, Jensen PM, Kazimirova M, Oteo JA, Papa A, Pfister K, Plantard O, Randolph SE, Rizzoli A, Santos-Silva MM, Sprong H, Vial L, Hendrickx G, Zeller H, Van Bortel W (2013) Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 6:1. https://doi.org/10.1186/1756-3305-6-1
Article
PubMed
PubMed Central
Google Scholar
Mejlon HA, Jaenson TGT (1997) Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol 21:747–754. https://doi.org/10.1023/A:1018421105231
Article
Google Scholar
Milne A (1943) The comparison of sheep-tick populations (Ixodes ricinus L.). Ann Appl Biol 30:240–250. https://doi.org/10.1111/j.1744-7348.1943.tb06195.x
Article
Google Scholar
Needham GR, Teel PD (1991) Off-host physiological ecology of Ixodid ticks. Annu Rev Entomol 36:659–681. https://doi.org/10.1146/annurev.en.36.010191.003303
CAS
Article
PubMed
Google Scholar
Perret J-L, Guerin PM, Diehl PA, Vlimant M, Gern L (2003) Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol 206:1809–1815. https://doi.org/10.1242/jeb.00345
Article
PubMed
Google Scholar
Pfäffle M, Littwin N, Muders SV, Petney TN (2013) The ecology of tick-borne diseases. Int J Parasitol 43:1059–1077. https://doi.org/10.1016/j.ijpara.2013.06.009
Article
PubMed
Google Scholar
Poulin R (2010) Parasite manipulation of host behavior: an update and frequently asked questions. In: Brockmann HJ, Roper TJ, Naguib M, Wynne-Edwards KE, Mitani JC, Simmons LW (eds) Advances in the study of behavior, vol. 41. Elsevier, pp 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Špitalská E, Kazimírová M (2014) Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health 2:251. https://doi.org/10.3389/fpubh.2014.00251
Article
PubMed
PubMed Central
Google Scholar
Schulze TL, Jordan RA, Hung RW (1997) Biases associated with several sampling methods used to estimate abundance of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol 34:615–623. https://doi.org/10.1093/jmedent/34.6.615
CAS
Article
PubMed
Google Scholar
Sormunen JJ (2018) Questing ticks, hidden causes: tracking changes in Ixodes ricinus populations and associated pathogens in southwestern Finland. Dissertation, University of Turku. https://urn.fi/URN:ISBN:978-951-29-7492-4 (Annales Universitatis Turkuensis A II 349, University of Turku, Finland)
Sormunen JJ, Andersson T, Aspi J, Bäck J, Cederberg T, Haavisto N, Halonen H, Hänninen J, Inkinen J, Kulha N, Laaksonen M, Loehr J, Mäkelä S, Mäkinen K, Norkko J, Paavola R, Pajala P, Petäjä T, Puisto A, Sippola E, Snickars M, Sundell J, Tanski N, Uotila A, Vesilahti E-M, Vesterinen EJ, Vuorenmaa S, Ylönen H, Ylönen J, Klemola T (2020) Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks Tick-borne Dis 11:101449. https://doi.org/10.1016/j.ttbdis.2020.101449
Article
PubMed
Google Scholar
Sormunen JJ, Klemola T, Hänninen J, Mäkelä S, Vuorinen I, Penttinen R, Sääksjärvi IE, Vesterinen EJ (2018) The importance of study duration and spatial scale in pathogen detection—evidence from a tick-infested island. Emerg Microbes & Infect 7:189. https://doi.org/10.1038/s41426-018-0188-9
Article
Google Scholar
Sormunen JJ, Klemola T, Vesterinen EJ, Vuorinen I, Hytönen J, Hänninen J, Ruohomäki K, Sääksjärvi IE, Tonteri E, Penttinen R (2016a) Assessing the abundance, seasonal questing activity, and Borrelia and tick-borne encephalitis virus (TBEV) prevalence of Ixodes ricinus ticks in a Lyme borreliosis endemic area in Southwest Finland. Ticks Tick-borne Dis 7:208–215. https://doi.org/10.1016/j.ttbdis.2015.10.011
Article
PubMed
Google Scholar
Sormunen JJ, Kulha N, Klemola T, Mäkelä S, Vesilahti E-M, Vesterinen EJ (2020b) Enhanced threat of tick‐borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health 67:822–838. https://doi.org/10.1111/zph.12767
Stroup WW (2013) Generalized linear mixed models: modern concepts, methods and applications. CRC Press, Boca Raton
Google Scholar
Tälleklint-Eisen L, Lane RS (2000) Efficiency of drag sampling for estimating population sizes of Ixodes pacificus (Acari: Ixodidae) nymphs in leaf litter. J Med Entomol 37:484–487. https://doi.org/10.1093/jmedent/37.3.484
Article
PubMed
Google Scholar