Skip to main content
Log in

Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genom 16:974

    Article  CAS  Google Scholar 

  • Cheong SP, Huang J, Bendena WG, Tobe SS, Hui JH (2015) Evolution of ecdysis and metamorphosis in arthropods: the rise of regulation of juvenile hormone. Integr Comp Biol 55:878–890

    Article  PubMed  Google Scholar 

  • Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K, Namiki T, Uchino K, Banno Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada T, Shinoda T (2012) Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet 8:e1002486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enya S, Ameku T, Igarashi F, Iga M, Kataoka H, Shinoda T, Niwa R (2014) A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila. Sci Rep 4:6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enya S, Yamamoto C, Mizuno H, Esaki T, Lin HK, Iga M, Morohashi K, Hirano Y, Kataoka H, Masujima T, Shimada-Niwa Y, Niwa R (2017) Dual roles of glutathione in ecdysone biosynthesis and antioxidant function during larval development in Drosophila. Genetics 207:1519–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrbach SE, Smagghe G, Velarde RA (2012) Insect nuclear receptors. Annu Rev Entomol 57:83–106

    Article  CAS  PubMed  Google Scholar 

  • Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC (2013) Ecdysone receptors: from the Ashburner model to structural biology. Annu Rev Entomol 58:251–271

    Article  CAS  PubMed  Google Scholar 

  • Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA 101:4024–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Wen D, Jia Q, Cui C, Wang J, Palli SR, Li S (2014) Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J Biol Chem 289:27874–27885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iga M, Kataoka H (2012) Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol Pharm Bull 35:838–843

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Tomonari S, Matsuoka Y, Watanabe T, Miyawaki K, Bando T, Tomioka K, Ohuchi H, Noji S, Mito T (2016) TGF-beta signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc Natl Acad Sci USA 113:5634–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jindra M, Belles X, Shinoda T (2015) Molecular basis of juvenile hormone signaling. Curr Opin Insect Sci 11:39–46

    Article  PubMed  Google Scholar 

  • Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 58:181–204

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li K, Gao Y, Liu X, Chen W, Ge W, Feng Q, Palli SR, Li S (2018) Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci USA 115:139–144

    Article  CAS  PubMed  Google Scholar 

  • Lafont R, Mathieu M (2007) Steroids in aquatic invertebrates. Ecotoxicology 16:109–130

    Article  CAS  PubMed  Google Scholar 

  • Li G, Niu JZ, Zotti M, Sun QZ, Zhu L, Zhang J, Liao CY, Dou W, Wei DD, Wang JJ, Smagghe G (2017) Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochem Mol Biol 87:136–146

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sheng Z, Liu H, Wen D, He Q, Wang S, Shao W, Jiang RJ, An S, Sun Y, Bendena WG, Wang J, Gilbert LI, Wilson TG, Song Q, Li S (2009) Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 136, 2015–2025

    Article  CAS  PubMed  Google Scholar 

  • Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E (2016) Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 75:10–23

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Wang M, Xu Z, Shen G, Wei P, Li M, Reid W, He L (2017) Adaptation of acaricide stress facilitates Tetranychus urticae expanding against Tetranychus cinnabarinus in China. Ecol Evol 7:1233–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW (2014) Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc Natl Acad Sci USA 111:7018–7023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, Oda S, Tatarazako N, Miura T, Colbourne JK, Iguchi T (2013) A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Commun 4:1856

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa H, Toyota K, Sumiya E, Iguchi T (2014) Comparison of JH signaling in insects and crustaceans. Curr Opin Insect Sci 1:81–87

    Article  PubMed  Google Scholar 

  • Miyakawa H, Sato T, Song Y, Tollefsen KE, Iguchi T (2017) Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia. J Steroid Biochem Mol Biol 184:62–68

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Niwa YS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno Y, Fujimoto Y, Shigenobu S, Kobayashi S, Shimada T, Katsuma S, Shinoda T (2010) Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid biosynthesis pathway. Development 137:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Ogihara MH, Hikiba J, Suzuki Y, Taylor D, Kataoka H (2015) Ovarian ecdysteroidogenesis in both immature and mature stages of an acari, Ornithodoros moubata. PLoS ONE 10:e0124953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marques G, Shimell MJ, Gilbert LI, O'Connor MB (2006) Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 298:555–570

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JH (2015) How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biol Evol 7:1951–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Z, Bendena WG, Nong W, Siggens KW, Noriega FG, Kai ZP, Zang YY, Koon AC, Chan HYE, Chan TF, Chu KH, Lam HM, Akam M, Tobe SS, Lam Hui JH (2017) MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc Biol Sci 284:20171827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Z, Bendena WG, Tobe SS, Hui JHL (2018) Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of microRNA. J Steroid Biochem Mol Biol 184:69–76

    Article  CAS  PubMed  Google Scholar 

  • Rewitz KF, O'Connor MB, Gilbert LI (2007) Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochem Mol Biol 37:741–753

    Article  CAS  PubMed  Google Scholar 

  • Riddiford LM, Truman JW, Mirth CK, Shen YC (2010) A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 137:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobe SS, Bendena WG (1999) The regulation of juvenile hormone production in arthropods. Functional and evolutionary perspectives. Ann NY Acad Sci 897:300–310

    Article  CAS  PubMed  Google Scholar 

  • Toyota K, Miyakawa H, Hiruta C, Furuta K, Ogino Y, Shinoda T, Tatarazako N, Miyagawa S, Shaw JR, Iguchi T (2015) Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. J Insect Physiol 80:22–30

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Pan H, Liu Y, Zhou X (2015) Stably expressed housekeeping genes across developmental stages in the two-spotted spider mite, Tetranychus urticae. PLoS ONE 10:e0120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka N, Rewitz KF, O'Connor MB (2013) Ecdysone control of developmental transitions: lessons from Drosophila research. Annu Rev Entomol 58:497–516

    Article  CAS  PubMed  Google Scholar 

  • Zhu XX, Oliver JH Jr, Dotson EM (1991) Epidermis as the source of ecdysone in an argasid tick. Proc Natl Acad Sci USA 88:3744–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation (31871969) and the Funds from Chongqing Science and Technology Commission (cstc2017shmszx-xdny0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sun, QZ., Liu, XY. et al. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. Exp Appl Acarol 78, 361–372 (2019). https://doi.org/10.1007/s10493-019-00396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00396-y

Keywords

Navigation