Skip to main content
Log in

Comparative genomics of N-acetyl-5-methoxytryptamine members in four Prunus species with insights into bud dormancy and abiotic stress responses in Prunus avium

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses.

Abstract

The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/ Supplementary Material.

References

  • Abramova A, Osińska A, Kunche H, Burman E, Bengtsson-Palme J (2021) CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics 37:121–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Wang F, Ahmad A, Ercisli S, Chen J, Guan Y, Zhao K, Zhou Y, Lan S, Liu Z (2023) Suggesting a prospect for melatonin-mediated orchid flowering under extreme conditions. Sci Hortic 321:112340

    Article  CAS  Google Scholar 

  • Ahmed IM, Nadira UA, Qiu C-W, Cao F, Chen Z-H, Vincze E, Wu F (2020) The barley S-adenosylmethionine synthetase 3 gene HvSAMS3 positively regulates the tolerance to combined drought and salinity stress in tibetan wild barley. Cells 9:1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P (2022) Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem 185:188–197

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal Behav 1:89–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in a rabidopsis thaliana. J Pineal Res 56:238–245

    Article  CAS  PubMed  Google Scholar 

  • Boycheva S, Daviet L, Wolfender J-L, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19:447–459

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HJ, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res 60:65–73

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back K (2014) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Su X, Muhammad A, Li M, Zhang J, Sun Y, Li G, Jin Q, Cai Y, Lin Y (2018) Molecular characterization, evolution, and expression profiling of the dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri). Front Genet 9:1–15

    Article  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20:1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubbels R, Reiter R, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • El-Naby A, Mohamed MAA, El-Naggar YIM (2019) Effect of melatonin, GA3 and NAA on vegetative growth, yield and quality of ‘canino’apricot fruits. Acta Sci Pol Hortorum Cultus 3:18

    Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–W38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629

    Article  CAS  PubMed  Google Scholar 

  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI biosystems database. Nucleic Acids Res 38:D492–D496

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R (2016) Melatonin in plants–diversity of levels and multiplicity of functions. Front Plant Sci 7:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314

    Article  CAS  PubMed  Google Scholar 

  • Hurst LD (2002) The ka/ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487

    Article  PubMed  Google Scholar 

  • Jan JE, Reiter RJ, Wasdell MB, Bax M (2009) The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J Pineal Res 46:1–7

    Article  CAS  PubMed  Google Scholar 

  • Johnson LS, Eddy SR, Portugaly E (2010) Hidden markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11:1–8

    Article  Google Scholar 

  • Jung S, Ficklin SP, Lee T, Cheng C-H, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S (2014a) The genome database for rosaceae (GDR): year 10 update. Nucleic Acids Res 42:D1237–D1244

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2014b) The genome database for rosaceae (GDR): year 10 update. Nucleic Acids Res 42:1237–1244

    Article  Google Scholar 

  • Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Royal Soc Biol Sci 279:5048–5057

    Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:1–9

    Article  Google Scholar 

  • Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57:262–268

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80:2587–2587

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhao D, Zheng C, Chen C, Peng X, Cheng Y, Wan H (2017) Genomic analysis of the ASMT gene family in Solanum lycopersicum. Molecules 22:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoor MA, Sabir IA, Shah IH, Wang H, Yu Z, Rasool F, Mazhar MZ, Younas S, Abdullah M, Cai Y (2021) Comprehensive comparative analysis of the GATA transcription factors in four rosaceae species and phytohormonal response in chinese pear (Pyrus bretschneideri) fruit. Int J Mol Sci 22:12492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor MA, Xu Y, Xu J, Wang Y, Sun W, Liu X, Wang L, Wang J, Liu R, Whiting MD (2023) Melatonin: a multi-functional regulator of fruit crop development and abiotic stress response. Sci Hortic 321:112282

    Article  CAS  Google Scholar 

  • Marta B, Szafrańska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, Hano C, Abbasi BH, Anjum S (2020) Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability 13:294

    Article  Google Scholar 

  • Pan Y, Xu X, Li L, Sun Q, Wang Q, Huang H, Tong Z, Zhang J (2023) Melatonin-mediated development and abiotic stress tolerance in plants. Front Plant Sci 14:1100827

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Yin H, Li L, Wang R, Wu J, Wu J, Zhang S (2018) Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front Plant Sci 9:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Tan D-X, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabir IA, Manzoor MA, Shah IH, Liu X, Jiu S, Wang J, Alam P, Abdullah M, Zhang C (2022a) Identification and comprehensive ggenome-wide analysis of glutathione S-transferase gene family in sweet cherry (Prunus avium) and their expression profiling reveals a likely role in anthocyanin accumulation. Front Plant Sci 13:938–800

    Article  Google Scholar 

  • Sabir IA, Manzoor MA, Shah IH, Liu X, Zahid MS, Jiu S, Wang J, Abdullah M, Zhang C (2022b) MYB transcription factor family in sweet cherry (Prunus avium L.): genome-wide investigation, evolution, structure, characterization and expression patterns. BMC Plant Biol 22:1–20

    Article  Google Scholar 

  • Sati H, Chinchkar AV, Kataria P, Pareek S (2023) Melatonin: A potential abiotic stress regulator. Plant Stress 15:100293

    Article  Google Scholar 

  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59:334–342

    Article  CAS  PubMed  Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66:657–668

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  CAS  PubMed  Google Scholar 

  • Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152

    Article  CAS  Google Scholar 

  • Valletta A, Trainotti L, Santamaria AR, Pasqua G (2010) Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in camptotheca acuminata decne (nyssaceae). BMC Plant Biol 10:1–10

    Article  Google Scholar 

  • Vimont N, Fouché M, Campoy JA, Tong M, Arkoun M, Yvin J-C, Wigge PA, Dirlewanger E, Cortijo S, Wenden B (2019) From bud formation to flowering : transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genom 20:1–23

    Article  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010a) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-H, Jin H, Marler B, Guo H (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li J, Paterson AH (2013) MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J (2014) Changes in melatonin levels in transgenic ‘micro-tom’tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56:134–142

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu J, Wang W, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Article  Google Scholar 

  • Wang K, Xing Q, Ahammed GJ, Zhou J (2022) Functions and prospects of melatonin in plant growth, yield, and quality. J Exp Bot 73:5928–5946

    Article  PubMed  Google Scholar 

  • Xia H, Shen Y, Shen T, Wang X, Zhang X, Hu P, Liang D, Lin L, Deng H, Wang J (2020) Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules 25:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G (2022) The role of melatonin in tomato stress response, growth and development. Plant Cell Rep 41:1631–1650

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wei X, Fang Z (2022) Melatonin mediates axillary bud outgrowth by improving nitrogen assimilation and transport in rice. Front Plant Sci 13:900262

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, Xu H, Huang X, Li S, Zhou A, Zhang X, Bolund L, Chen Q, Wang J, Yang H, Fang L, Shi C (2018) WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res 46:W71–W75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) Interproscan - an integration platform for the signature-recognition methods in interpro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Nawaz G, Cao Q, Xu T (2022) Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Sci Hortic 291:110560

    Article  CAS  Google Scholar 

  • Zhu M, Yan B, Hu Y, Cui Z, Wang X (2020) Genomics genome-wide identification and phylogenetic analysis of rice FTIP gene family. Genomics 112:3803–3814

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Shanghai Agriculture Applied Technology Development Program, China (Grant No. 2022–02-08–00-12-F01120), Natural Science Foundation of Shanghai (Grant No. 23ZR1430600), Shanghai Agriculture Applied Technology Development Program, China (Grant No. 2022–02-08–00-12-F01111), China Agriculture Research System (Grant No. CARS-30–2-08), National Natural Science Foundation of China (Grant No. 32102347), Shanghai Sailing Program (Grant No. 21YF1422100), Startup Fund for Young Faculty at SJTU (Grant No. 21X010500643).

Author information

Authors and Affiliations

Authors

Contributions

MAM conceived and designed the experiments; YX, ZL, JX, YW, WS, XL, LW, MA, and RL contributed reagents/materials/analysis tools; SJ and CZ provided guidance in the whole manuscript. MAM wrote the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Songtao Jiu or Caixi Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Communicated by Anis Ali Shah.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, M.A., Xu, Y., lv, Z. et al. Comparative genomics of N-acetyl-5-methoxytryptamine members in four Prunus species with insights into bud dormancy and abiotic stress responses in Prunus avium. Plant Cell Rep 43, 89 (2024). https://doi.org/10.1007/s00299-024-03184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03184-0

Keywords

Navigation