Skip to main content

Advertisement

Log in

Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

A Correction to this article was published on 04 December 2017

This article has been updated

Abstract

We analysed species-level datasets representing Oribatida assemblages along a gradient of old-growth primary tropical forests, secondary forests, and plantation forests in Dong Nai Biosphere Reserve, Vietnam. We identified patterns in abundance, species richness and species assemblages of Oribatida, then applied taxonomic sufficiency approach to the datasets. Using three levels of higher-taxon aggregation, we evaluated whether aggregated datasets are useful in identifying ecological patterns, in comparison to species-level data. Species-level data on Oribatida assemblages clearly separated plantation forests from other forest environments; there was no significant separation between primary and secondary forests. Geographical structuring of species-level assemblages was significant, separating sites from two regions of the reserve. There was a significant concordance between multivariate ordination plots produced for species-level and aggregated (families, suborders/superfamilies) datasets, with Oribatida assemblages of plantation forests consistently separated from two other forest types. Mycobatidae (at family level) and Ceratozetoidea (at suborder/superfamily level) were indicators of plantation forests. The coarsest taxonomic resolution dataset with only four aggregated groups produced no separation of Oribatida assemblages by forest type or region. Moderate level of taxonomic aggregation applied to Oribatida community data did not cause great differences in patterns revealed by multivariate analysis, and therefore could be a valid approach to analysing the structure of tropical Oribatida assemblages. The taxonomic level of suborders and Brachypylina superfamilies appears to be the best compromise for ecological information and ease of identification. Two traits—body size and reproductive mode—were recorded for collected Oribatida species. Community-weighted mean trait value, modified Mason’s index of functional divergence, and Rao’s index of functional diversity were calculated for each trait in each of the sampled Oribatida assemblages. Sexual reproduction was a dominant reproductive mode in soil Oribatida and did not vary across forest types, indicating similar levels of resource limitation for this trait. For body size, lower functional divergence in plantation forests suggests less scope for niche differentiation and higher competition among different body sizes in this forest type. Use of functional traits can enhance and complement the analysis of Oribatida communities, but more data are needed on feeding- and diet-related traits in tropical Oribatida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 04 December 2017

    Due to an unfortunate turn of events, the statistical results for TS1 (F- and p-values) in Table 4 were displayed in reversed order. The correct representation of Table 4 is published here and should be treated as definitive.

References

  • Anderson JM (2009) Why should we care about soil fauna? Pesqui Agropecu Bras 44:835–842

    Article  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Bacci T, Trabucco B, Marzialetti S, Marusso V, Lomiri S, Vani D, Lamberti CV (2009) Taxonomic sufficiency in two case studies: where does it work better? Mar Ecol. https://doi.org/10.1111/j.1439-0485.2009.00324.x

    Google Scholar 

  • Badejo MA, Akinwole PO (2006) Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest. Exp Appl Acarol 40:145–156

    Article  PubMed  Google Scholar 

  • Bailey RC, Norris RH, Reynoldson TB (2001) Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J N Am Benthol Soc 20:280–286

    Article  Google Scholar 

  • Beck L, Woas S, Horak F (1997) Taxonomische Ebenen als Basis der Bioindikation—Fallbeispiele aus der Gruppe der Oribatiden (Acari). Abh Ber Naturkundemus Görlitz 69:67–85 (in German)

    Google Scholar 

  • Bedano JC, Domınguez A, Arolfo R (2011) Assessment of soil biological degradation using mesofauna. Soil Tillage Res 117:55–60

    Article  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423

    Article  Google Scholar 

  • Behan-Pelletier V, Paoletti MG, Bisset B, Stinner BR (1993) Oribatid mites of forest habitat in northern Venezuela. Trop Zool 1:39–54

    Google Scholar 

  • Bevilacqua S, Fraschetti S, Musco L, Terlizzi A (2009) Taxonomic sufficiency in the detection of natural and human-induced changes in marine assemblages: a comparison of habitats and taxonomic groups. Mar Pollut Bull 58:1850–1859

    Article  CAS  PubMed  Google Scholar 

  • Blanc L, Maury-Lechon G, Pascal J-P (2000) Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends. J Biogeogr 27:141–157

    Article  Google Scholar 

  • Bouchard RW Jr, Huggins D, Kriz J (2005) A review of the issues related to taxonomic resolution in biological monitoring of aquatic ecosystem with an emphasis on macroinvertebrates. Prepared in fulfillment of USEPA Grant X7-99790401. Central Plains Center for BioAssessment, Kansas Biological Survey, Lawrence, KS

  • Bowman MF, Bailey RC (1997) Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Can J Fish Aquat Sci 54:1802–1807

    Article  Google Scholar 

  • Cancela da Fonseca JP (1990) Forest management: impact on soil microarthropods and soil microorganisms. Rev Ecol Biol Sol 27:269–283

    Google Scholar 

  • Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004) Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 117:453–459

    Article  Google Scholar 

  • Caruso T, Migliorini M (2006) Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol 30:46–53

    Article  Google Scholar 

  • Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81:214–221

    Article  PubMed  Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Coleman DC, Crossley DA Jr (1996) Fundamentals of soil ecology. Academic Press, New York

    Google Scholar 

  • Dauvin JC, Gomez Gesteira JL, Salvande Fraga M (2003) Taxonomic sufficiency: an overview of its use in the monitoring of sublittoral benthic communities after oil spills. Mar Pollut Bull 46:552–555

    Article  CAS  PubMed  Google Scholar 

  • Derraik JGB, Closs GP, Dickinson KJM, Sirvid P, Barratt BIP, Patrick BH (2002) Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conserv Biol 16:1015–1023

    Article  Google Scholar 

  • DNBR (2017) Dong Nai culture and nature reserve: Dong Nai Biosphere Reserve. http://dongnaireserve.org.vn. Accessed 3 July 2017

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Ellis D (1985) Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:442–461

    Article  Google Scholar 

  • Ermilov SG, Anichkin AE (2010) Three new species of Galumnidae (Acari: Oribatida) from Cat Tien National Park, southern Vietnam. Zootaxa 2681:20–23

    Google Scholar 

  • Ermilov SG, Anichkin AE (2013a) Oribatid mites (Acari, Oribatida) from dipterocarp and polydominant forests of the Dong Nai Culture and Nature Reserve (Southern Vietnam), with description of a new species of Lyroppia (Oppiidae). Acarologia 53:101–109

    Article  Google Scholar 

  • Ermilov SG, Anichkin AE (2013b) Oribatid mites (Acari: Oribatida) from acacia and pine plantations in southern Vietnam, with description of a new species of the subgenus Galumna (Cosmogalumna). Syst Appl Acarol 18:80–88

    Article  Google Scholar 

  • Ermilov SG, Anichkin AE (2013c) Collection of oribatid mites (Acari: Oribatida) from Dong Nai Biosphere Reserve of southern Vietnam, with description of three new species. Ann Zool 63:177–193

    Article  Google Scholar 

  • Ermilov SG, Anichkin AE, Wu D (2012a) Oribatid mites from Bu Gia Map National Park (Southern Vietnam), with description of a new species of Dolicheremaeus (Tetracondylidae) (Acari: Oribatida). Genus 23:591–601

    Google Scholar 

  • Ermilov SG, Niedbała W, Anichkin AE (2012b) Oribatid mites of Dong Nai Biosphere Reserve (= Cat Tien National Park) of Southern Vietnam, with description of a new species of Pergalumna (Acari, Oribatida, Galumnidae). Acarina 20:20–28

    Google Scholar 

  • Ermilov SG, Anichkin AE, Tolstikov AV (2014) The oribatid mite genus Papillocepheus (Acari, Oribatida, Tetracondylidae), with description of a new species from southern Vietnam. ZooKeys 381:1–10

    Article  Google Scholar 

  • Farská J, Prejzková K, Rusek J (2014) Management intensity affects traits of soil microarthropod community in montane spruce forest. Appl Soil Ecol 75:71–79

    Article  Google Scholar 

  • Franklin E, Santos EMR, Albuquerque MIC (2007) Edaphic and arboricolous oribatid mites (Acari; Oribatida) in tropical environments: changes in the distribution of higher level taxonomic groups in the communities of species. Braz J Biol 67:447–458

    Article  CAS  PubMed  Google Scholar 

  • Franklin E, de Moraes J, Landeiro VL, de Souza JLP et al (2013) Geographic position of sample grid but not the removal of uncommon species affect multivariate analyses of diverse assemblages: the case of oribatid mites (Acari: Oribatida). Ecol Indic 34:172–180

    Article  Google Scholar 

  • Gergócs V, Hufnagel L (2009) Application of oribatid mites as indicators. Appl Ecol Environ Res 7:79–98

    Article  Google Scholar 

  • Grandjean F (1953) Essai de classification des Oribates (Acariens). Bull Soc Zool Fr 78:421–446 (in French)

    Google Scholar 

  • Groc S, Delabie JHC, Longino JT, Orivel J, Majer JD, Vasconcelos HL, Dejean A (2010) A new method based on taxonomic sufficiency to simplify studies on Neotropical ant assemblages. Biol Conserv 143:2832–2839

    Article  Google Scholar 

  • Hanna C, Naughton I, Boser C, Holway D (2015) Testing the effects of ant invasions on non-ant arthropods with high-resolution taxonomic data. Ecol Appl 25:1841–1850

    Article  PubMed  Google Scholar 

  • Hasegawa M, Ito MT, Yoshida T, Seino T, Chung AYC, Kitayama K (2014) The effects of reduced-impact logging practices on soil animal communities in the Deramakot Forest Reserve in Borneo. Appl Soil Ecol 83:13–21

    Article  Google Scholar 

  • Heino J (2014) Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecol Indic 36:186–194

    Article  Google Scholar 

  • Hevia V, Martín-López B, Palomo S, García-Llorente M, de Bello F, González JA (2017) Trait-based approaches to analyse links between the drivers of change and ecosystem services: synthesizing existing evidence and future challenges. Ecol Evol 7:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirst AJ (2006) Influence of taxonomic resolution on multivariate analyses of arthropod and macroalgal reef assemblages. Mar Ecol Prog Ser 324:83–93

    Article  Google Scholar 

  • Karasawa S, Hijii N (2008) Vertical stratification of oribatid (Acari: Oribatida) communities in relation to their morphological and life-history traits and tree structures in a subtropical forest in Japan. Ecol Res 23(1):57–69

    Article  Google Scholar 

  • Khokhlova OS, Myakshina TN, Kuznetsov AN, Gubin SV (2017) Morphogenetic features of soils in the Cat Tien National Park, southern Vietnam. Eurasian Soil Sci 50:158–175

    Article  CAS  Google Scholar 

  • Konar B, Iken K (2009) Influence of taxonomic resolution and morphological functional groups in multivariate analyses of macroalgal assemblages. Phycologia 48(1):24–31

    Article  Google Scholar 

  • Lawton JH, Naeem S, Thompson LJ, Hector A, Crawley MJ (1998) Biodiversity and ecosystem function: getting the Ecotron experiment in its correct context. Funct Ecol 12:848–852

    Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology—the benefits of genus- and species-level identifications. J N Am Benthol Soc 20:287–298

    Article  Google Scholar 

  • Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Lisboa FJG, Peres-Neto PR, Chaer GM, Jesus EdC, Mitchell RJ, Chapman SJ et al (2014) Much beyond Mantel: bringing Procrustes association metric to the plant and soil ecologist’s toolbox. PLoS ONE 9(6):e101238

    Article  PubMed  PubMed Central  Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23(3):374–382

    Article  Google Scholar 

  • Maraun M, Fronczek S, Marian F, Sandmann D, Scheu S (2013) More sex at higher altitudes: changes in the frequency of parthenogenesis in oribatid mites in tropical montane rain forests. Pedobiologia 56:185–190

    Article  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Migge-Kleian S, Woltmann L, Anas I, Schulz W, Steingrebe A, Schaefer M (2007) Impact of forest disturbance and land use change on soil and litter arthropod assemblages in tropical rainforest margins. In: Tscharntke T, Leuschner C, Zeller M et al (eds) Stability of tropical rainforest margins: linking ecological, economic and social constraints of land use and conservation. Springer, Berlin, pp 147–163

    Chapter  Google Scholar 

  • Minor MA, Ermilov SG (2015) Effects of topography on soil and litter mites (Acari: Oribatida, Mesostigmata) in a tropical monsoon forest in Southern Vietnam. Exp Appl Acarol 67:357–372

    Article  PubMed  Google Scholar 

  • Minor MA, Ermilov SG, Anichkin AE (2017) Biodiversity of soil oribatid mites (Acari: Oribatida) in a tropical highland plateaux, Bi Doup-Nui Ba National Park, Southern Vietnam. Trop Ecol 58:45–55

    Google Scholar 

  • Mueller M, Pander J, Geist J (2013) Taxonomic sufficiency in freshwater ecosystems: effects of taxonomic resolution, functional traits, and data transformation. Freshw Sci 32:762–778

    Article  Google Scholar 

  • Nguyen HT, Vu QM (2012) Oribatid mite (Acari: Oribatida) community structures—bioindicators of environment changes in Phong Nha–Ke Bang National Park, province of Quang Binh. J Plant Protect 41:41–44 (in Vietnamese with English summary)

    Google Scholar 

  • Niedbała W, Ermilov SG (2014) Ptyctimous mites (Acari, Oribatida) from the joint Russian-Vietnamese biological expedition (October 2013–April 2014). Zootaxa 3884:156–168

    Article  PubMed  Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, OConnor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratios. Chapman and Hall, Boca Raton, pp 8–99

    Chapter  Google Scholar 

  • Noti MI, André HW, Ducarme X, Lebrun P (2003) Diversity of soil oribatid mites (Acari: Oribatida) from high katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiv Conserv 12:767–785

    Article  Google Scholar 

  • Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf. Accessed 12 June 2017

  • Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity. Conserv Biol 7:562–568

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  PubMed  Google Scholar 

  • Pik AJ, Oliver I, Beattie AJ (1999) Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Aust J Ecol 24:555–562

    Article  Google Scholar 

  • Potapov AA, Semenina EE, Korotkevich AY, Kuznetsova NA, Tiunov AV (2016) Connecting taxonomy and ecology: trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol Biochem 101:20–31

    Article  CAS  Google Scholar 

  • Rosser N (2017) Shortcuts in biodiversity research: what determines the performance of higher taxa as surrogates for species? Ecol Evol 7:2595–2603

    Article  PubMed  PubMed Central  Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484

    Article  Google Scholar 

  • Somerfield PJ, Clarke KR (1995) Taxonomic levels, in marine community studies, revisited. Mar Ecol Prog Ser 127:113–119

    Article  Google Scholar 

  • Sourcebook (2004) Sourcebook of existing and proposed protected areas in Vietnam, 2nd ed. BirdLife International in Indochina and Ministry of Agriculture and Rural Development. http://thiennhienviet.org.vn/sourcebook/source_book/index_EN.html. Accessed 22 June 2017

  • Subías LS (2004) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepto fósiles). Graellsia 60 (número extraordinario):3–305. Online version (2016) http://escalera.bio.ucm.es/usuarios/bba/cont/docs/RO_1.pdf. Accessed 18 Feb 2016

  • Terlizzi A, Bevilacqua S, Fraschetti S, Boero F (2003) Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise. Mar Pollut Bull 46:556–561

    Article  CAS  PubMed  Google Scholar 

  • Terlizzi A, Anderson MJ, Bevilacqua S, Fraschetti S, Wlodarska-Kowalczuk M, Ellingsen KE (2009) Beta diversity and taxonomic sufficiency: do higher-level taxa reflect heterogeneity in species composition? Divers Distrib 15:450–458

    Article  Google Scholar 

  • Timms LL, Bowden JJ, Summerville KS, Buddle CM (2013) Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv Divers 6:453–462

    Article  Google Scholar 

  • Vandewalle M, de Bello F, Berg MP et al (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947

    Article  Google Scholar 

  • Vu QM (2011) Oribatid soil mite (Acari: Oribatida) of northern Vietnam: species distribution and densities according to soil and habitat type. Pan Pacific Entomol 87:209–222

    Article  Google Scholar 

  • Vu QM, Nguyen TT (2000) Microarthropod community structures (Oribatei and Collembola) in Tam Dao National Park, Vietnam. J Biosci 25:379–386

    Article  Google Scholar 

  • Vu QM, Nguyen XL (2004) Forest soil microarthropod community structures (microarthropoda) at different climate altitudinal elevations in National Park Tam Dao, Vietnam. J Agric Rural Dev 39:409–410 (in Vietnamese with English Summary)

    Google Scholar 

  • Woas S (2002) Acari. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft, Sofia-Moscow, pp 21–291

    Google Scholar 

  • Zhao J, Shao Y, Wang X, Neher DA, Xu G, Li ZA, Fu S (2013) Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecol Indic 24:236–239

    Article  Google Scholar 

Download references

Acknowledgements

The study was in part supported by the ‘Biodiversity’ Program of the Russian Academy of Sciences. We are grateful to Dr. A.E. Anichkin for help in collecting material, and to Dr. A.A. Yurtaev (Tyumen State University) for producing the maps in Fig. 1. We thank two anonymous reviewers for comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Minor.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10493-017-0206-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minor, M.A., Ermilov, S.G. & Tiunov, A.V. Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages. Exp Appl Acarol 73, 365–381 (2017). https://doi.org/10.1007/s10493-017-0190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-017-0190-2

Keywords

Navigation