Skip to main content
Log in

Molecular discrimination of phytoseiids associated with the red palm mite Raoiella indica (Acari: Tenuipalpidae) from Mauritius and South Florida

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Phytoseiid populations imported from Mauritius for evaluation for a classical biological control program in Florida, USA, were morphologically identified as Amblyseius largoensis Muma, a species associated with the red palm mite in south Florida and the Caribbean. Bayesian analysis and sequence divergences of the mitochondrial 12S rRNA and nuclear Elongation factorI alpha (EF-) genes and Neighbor-Joining analysis of High-fidelity-RAPD-PCR markers were used to discriminate between the south Florida and Mauritius populations. High-fidelity-RAPD-PCR markers in addition to Bayesian and sequence divergence analyses of the 12S rRNA sequences suggest that the Mauritius and south Florida populations are genetically different but whether these are species or population differences is unknown. The degenerate EF- primers used to survey the phytoseiids amplified two different elongation factor sequences with distinct amino acid translations, the putative EF- and an unknown elongation factor. Variability within the 12S gene was used to develop population-specific primers for identifying the Mauritius phytoseiids in the event they are released in south Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Stephen F, Maden TL, Schäffer AA, Zhang J, Zang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Borchert D, Margosian M (2007) Risk analysis of potential consequences associated with the introduction of the red palm mite, Raoiella indica, into the United States. USDA-APHIS-PPQ-CPHST-PERAL

  • Bowman HM (2010) Molecular discrimination of phytoseiids associated with the red palm mite Raoiella indica (Acari: Tenuipalpidae) from Mauritius and south Florida. MS Thesis, University of Florida, Gainesville, p 136

  • Brower AVZ, DeSalle R (1994) Practical and theoretical considerations for choice of a DNA sequence region in insect molecular systematics, with a short review of published studies using nuclear gene regions. Ann Entomol Soc Am 87:702–716

    CAS  Google Scholar 

  • Carrillo D (2011) Potential of Florida natural enemies to control the invasive species Raoiella indica (Acari: tenuipalpidae) PhD Dissertation, University of Florida, Gainesville, p 151

  • Cocco A, Hoy MA (2009) Feeding, reproduction, and development of the red palm mite (Acari: Tenuipalpidae) on selected palms and banana cultivars in quarantine. Fla Entomol 92:276–291

    Article  Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7:3–14

    Google Scholar 

  • Danforth BN, Ji S (1998) Elongation factor-Iα occurs as two copies in bees: implications for phylogenetic analysis of EF- Iα sequences in insects. Mol Biol Evol 15:225–235

    Article  PubMed  CAS  Google Scholar 

  • De Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:494

    Google Scholar 

  • Denmark HA, Muma MH (1989) A revision of the genus Amblyseius Berlese, 1914 (Acari:Phytoseiidae). Occasional papers of the Florida State Collection of Arthropods, v. 4. FDACS DPI

  • Edwards OR, Hoy MA (1993) Polymorphisms in two parasitoids detected using random amplified polymorphic DNA (RAPD) PCR. Biol Control 3:243–257

    Article  Google Scholar 

  • Edwards OR, Hoy MA (1995a) Monitoring laboratory and field biotypes of the walnut aphid parasite, Trioxys pallidus, in population cages using RAPD-PCR. Biocontrol Sci Technol 5:313–327

    Article  Google Scholar 

  • Edwards OR, Hoy MA (1995b) RAPD-PCR DNA markers demonstrate fate of a laboratory biotype of Trioxys pallidus (Hymenoptera: Aphidiidae) after release into three California walnut orchards. Environ Entomol 24:487–496

    Google Scholar 

  • Edwards OR, Melo EL, Smith L, Hoy MA (1997) Discrimination of three Typhlodromalus species (Acari: Phytoseiidae) using random amplified polymorphic DNA (RAPD) markers. Exp Appl Acarol 21:101–109

    Google Scholar 

  • Evans JD, Lopez DL (2002) Complete mitochondrial DNA sequence of the important honeybee pest, Varroa destructor (Acari: Varroidae). Exp Appl Acarol 27:69–78

    Article  PubMed  CAS  Google Scholar 

  • Flechtmann CHW, Etienne J (2004) The red palm mite, Raoiella indica Hirst, a threat to palms in the Americas (Acari: Prostimagata: Tenuipalpidae). Syst Appl Acarol 9:109–110

    Google Scholar 

  • Hall BG (2001) Phylogenetic trees made easy. A how-to manual for molecular biologists. Sinauer Assoc, Sunderland

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hovemann B, Richter S, Walldorf U, Cziepluch C (1988) Two genes encode related cytoplasmic elongation factors 1α (EF-1α) in Drosophila melanogaster with continuous and stage specific expression. Nuc Acid Res 16:3175–3194

    Article  CAS  Google Scholar 

  • Hoy MA (2003) Insect molecular genetics: an introduction to principles and applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Hoy MA (2012) Overview of a classical biological control project directed against the red palm mite in Florida. Exp Appl Acarol 57. doi:10.1007/s10493-012-9537-x

  • Hoying SA, Croft BA (1977) Comparisons between populations of Typhlodromus longipilus Nesbitt and T. occidentalis Nesbitt: taxonomy, distribution, and hybridization. Ann Entomol Soc Am 70:150–159

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2002) Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biol Control 25:136–142

    Article  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264–274

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2009a) The nuclear genome of the phytoseiid Metaseiulus occidentalis (Acari: Phytoseiidae) is among the smallest known in arthropods. Exp Appl Acarol 47:263–273

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2009b) First divergence time estimate of spiders, scorpions, mites, and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47:1–18

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2010) A DNA extraction procedure that allows mite specimens to be slide mounted: phytoseiid species evaluated as a model. Exp Appl Acarol 52:131–140

    Article  PubMed  Google Scholar 

  • Johanowicz DL, Hoy MA (1996) Wolbachia in a predator-prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Ann Entomol Soc Am 89:435–441

    CAS  Google Scholar 

  • Jordal BH (2002) Elongation factor 1α resolves the monophyly of the haplodiploid ambrosia beetles Xyleborini (Coleoptera: Curculionidae). Insect Mol Biol 11:453–465

    Article  PubMed  CAS  Google Scholar 

  • Kambhampati S, Smith PT (1995) PCR primers for the amplification of four insect mitochondrial fragments. Insect Mol Biol 4:233–236

    Article  PubMed  CAS  Google Scholar 

  • Klimov PB, O’Connor BM (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Mol Phylogenet Evol 47:1135–1156

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445

    Article  PubMed  CAS  Google Scholar 

  • McMurtry JA, De Moraes GJ (1894) Some phytoseiid mites from the South Pacific, with descriptions of new species and a definition of the Amblyseius largoensis group. Int J Acarol 10:27–37

    Article  Google Scholar 

  • McMurtry JA, Mahr DL, Johnson HG (1976) Geographic races in the predaceous mite, Amblyseius potentillae (Acari: Phytoseiidae). Int J Acarol 2:23–28

    Article  Google Scholar 

  • Meissner H, Lemay A, Bertone C, Schwartzburg K, Ferguson L, Newton L (2009) Evaluation of pathways for exotic plant pest movement into and within the greater Caribbean region. USDA-APHIS-PPQ-CPHST-PERAL-CISWG

  • Moutia LA (1958) Contribution to study of some phytophagous acarina and their predators in Mauritius. Bull Entomol Res 49:59–75

    Article  Google Scholar 

  • Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Gutierrez J, Lagnel J (1996) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull Entomol Res 86:407–417

    Article  CAS  Google Scholar 

  • Navajas M, Lagnel J, Fauvel G, de Moraes G (1999) Sequence variation of ribosomal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Exp Appl Acarol 23:851–859

    Article  PubMed  CAS  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Normark BB (1996) Phylogeny and evolution of parthenogenetic weevils of the Aramigus tesselatus species complex (Coleoptera: Curculionidae: Naupactini): evidence from mitochondrial DNA sequences. Evolution 50:734–745

    Article  CAS  Google Scholar 

  • Noronha ACS, Moraes GJ (2004) Reproductive compatibility between mite populations previously identified as Euseius concordis (Acari: Phytoseiidae). Exp Appl Acarol 32:271–279

    Article  PubMed  Google Scholar 

  • Okassa M, Tixier MS, Cheval B, Kreiter S (2009) Molecular and morphological evidence for a new species status within the genus Euseius (Acari: Phytoseiidae). Can J Zool 87:689–698

    Article  CAS  Google Scholar 

  • Okassa M, Tixier MS, Kreiter S (2010) Morphological and molecular diagnostics of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae). Exp Appl Acarol 52:291–303

    Article  PubMed  Google Scholar 

  • Peña JE, Rodrigues JC, Osborne L, Roda A (2009) Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. Integr Control Plant-feed Mites IOBC/wprs Bull 50:69–79

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Roehrdanz RL, Degrugillier ME (1998) Long sections of mitochondrial DNA amplified from fourteen orders of insects using conserved polymerase chain reaction primers. Ann Entomol Soc Am 91:771–778

    CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salomone N, Emerson BC, Hewitt M, Bernini F (2002) Phylogenetic relationships among the Canary Islands Stegnacaridae (Acari, Oribatida) inferred from mitochondrial DNA sequence data. Mol Ecol 11:79–89

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Sinauer Assoc

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tixier M-S, Kreiter S, Ferragut F, Cheval B (2006a) The suspected synonymy of Kampimodromus hmiminai and Kampimodromus adrianae (Acari: Phytoseiidae): morphological and molecular investigations. Can J Zool 84:1216–1222

    Article  CAS  Google Scholar 

  • Tixier M-S, Kreiter S, Barbar Z, Ragusa S, Cheval B (2006b) Status of two cryptic species, Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zool Scripta 35:115–122

    Article  Google Scholar 

  • Tixier M-S, Guichou S, Kreiter S (2008a) Morphological variation in the biological control agent Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): consequences for diagnostic reliability and synonymies. Invertebr Syst 22:453–469

    Article  Google Scholar 

  • Tixier M-S, Kreiter S, Croft BA, Cheval B (2008b) Kampimodromus aberrans (Acari: Phytoseiidae) from the USA: morphological and molecular assessment of its density. Bull Entomol Res 98:125–134

    Article  PubMed  Google Scholar 

  • Tixier M-S, Ferrero M, Okassa M, Guichou S, Kreiter S (2010) On the specific identity of specimens of Phytoseiulus longipes evans (Mesostigmata: Phytoseiidae) showing different feeding behaviours: morphological and molecular analyses. Bull Entomol Res 100:569–579

    Article  PubMed  CAS  Google Scholar 

  • Toda S, Osakabe MH, Komazaki S (2000) Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species (Acari: Tetranychidae). Exp Appl Acarol 24:821–829

    Article  PubMed  CAS  Google Scholar 

  • Walldorf U, Hovemann BT (1990) Apis mellifera cytoplasmic elongation factor 1 alpha (EF-1a) is closely related to Drosophila melanogaster EF-1 alpha. FEBS Lett 267:245–249

    Article  PubMed  CAS  Google Scholar 

  • Walldorf U, Hovemann B, Bautz EKF (1985) F1 and F2: two similar genes regulated differently during development of Drosophila melanogaster. Proc Natl Acad Sci USA 82:5795–5799

    Article  PubMed  CAS  Google Scholar 

  • Walter DE, Campbell NJH (2003) Exoic vs endemic biocontrol agents: would the real Stratioaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), please stand up? B. Biol Control 26:253–269

    Article  Google Scholar 

  • Yaninek JS, Mègevand B, de Moraes GJ, Bakker F, Braun A, Herren HR (1991) Establishment of the neotropical predator Amblyseius idaeus (Acari: Phytoseiidae) in Benin, West Africa. Biocontrol Sci Techn 1:323–330

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Davies, Fischer and Eckes Endowment in Biological Control to Marjorie A. Hoy, the University of Florida Institute Of Food and Agricultural Sciences, and the USDA-APHIS contract “Classical Biological Control of the Red Palm Mite”. The authors are grateful to A. Jeyaprakash for assistance. Cal Welbourn, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida and H. A. Denmark are acknowledged for their taxonomic assistance. Daniel Carrillo and Jorge Peña are acknowledged for their assistance with collecting phytoseiid specimens in south Florida. The authors thank M. Dornburg, K. Krey, R. Tanay, and R. Wilcox for assistance in rearing and maintaining the colonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, H.M., Hoy, M.A. Molecular discrimination of phytoseiids associated with the red palm mite Raoiella indica (Acari: Tenuipalpidae) from Mauritius and South Florida. Exp Appl Acarol 57, 395–407 (2012). https://doi.org/10.1007/s10493-012-9549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9549-6

Keywords

Navigation