Skip to main content
Log in

The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of C-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set S, the gradient approximation possesses the superconvergence: \({\max _{P \in S}}|(\nabla u - \overline \nabla {u_h})(P)| = O({h^2})|\ln h{|^{3/2}}\), where \(\overline \nabla \) denotes the average gradient on elements containing vertex P. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the H 1-norm and establish an asymptotically exact a posteriori error estimator for the error ‖uu h 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, U. Banerjee, J. E. Osborn: Superconvergence in the generalized finite element method. Numer. Math. 107 (2007), 353–395.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Babuška, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347–392.

    Article  MATH  Google Scholar 

  3. I. Babuška, J. R. Whiteman, T. Strouboulis: Finite Elements. An Introduction to the Method and Error Estimation. Oxford University Press, Oxford, 2011.

    Google Scholar 

  4. R. E. Bank, D. J. Rose: Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987), 777–787.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bergam, Z. Mghazli, R. Verfürth: A posteriori estimates of a finite volume scheme for a nonlinear problem. Numer. Math. 95 (2003), 599–624. (In French.)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bi: Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods Partial Differ. Equations 23 (2007), 220–233.

    Article  MATH  Google Scholar 

  7. C. Bi, V. Ginting: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108 (2007), 177–198.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. H. Brandts: Analysis of a non-standard mixed finite element method with applications to superconvergence. Appl. Math., Praha 54 (2009), 225–235.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Brandts, M. Křížek: Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27–36.

    MathSciNet  MATH  Google Scholar 

  11. Z. Cai: On the finite volume element method. Numer. Math. 58 (1991), 713–735.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Chatzipantelidis, V. Ginting, R. D. Lazarov: A finite volume element method for a non-linear elliptic problem. Numer. Linear Algebra Appl. 12 (2005), 515–546.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. Chen: Superconvergence of generalized difference method for elliptic boundary value problem. Numer. Math., J. Chin. Univ. 3 (1994), 163–171.

    MATH  Google Scholar 

  14. L. Chen: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47 (2010), 4021–4043.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Chen, R. Li, A. Zhou: A note on the optimal L 2-estimate of the finite volume element method. Adv. Comput. Math. 16 (2002), 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  16. S.-H. Chou, D. Y. Kwak, Q. Li: Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equations 19 (2003), 463–486.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Douglas, Jr., T. Dupont: A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975), 689–696.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Douglas, Jr., T. Dupont, J. Serrin: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch Ration. Mech. Anal. 42 (1971), 157–168.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. E. Ewing, T. Lin, Y. Lin: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002), 1865–1888.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Hlaváček, M. Křížek: On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions. Stab. Appl. Anal. Contin. Media 3 (1993), 85–97.

    Google Scholar 

  21. I. Hlaváček, M. Křížek, J. Malý: On Galerkin approximations of a quasilinear non-potential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Huang, L. Li: Some superconvergence results for the covolume method for elliptic problems. Commun. Numer. Methods Eng. 17 (2001), 291–302.

    Article  MATH  Google Scholar 

  23. M. Křížek, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Mathematical Modelling: Theory and Applications 1, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  24. R. D. Lazarov, I. D. Mishev, P. S. Vassilevski: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996), 31–55.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Li: Generalized difference methods for a nonlinear Dirichlet problem. SIAMJ. Numer. Anal. 24 (1987), 77–88.

    Article  MATH  Google Scholar 

  26. R. Li, Z. Chen, W. Wu: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Pure and Applied Mathematics, Marcel Dekker, New York, 2000.

    Google Scholar 

  27. Q. Lin, Q. D. Zhu: The Preprocessing and Postprocessing for the Finite Element Methods. Shanghai Sci. & Tech. Publishing, Shanghai, 1994. (In Chinese.)

    Google Scholar 

  28. J. Lv, Y. Li: L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37 (2012), 393–416.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Schmidt: Box schemes on quadrilateral meshes. Computing 51 (1993), 271–292.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Süli: Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991), 1419–1430.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. B. Wahlbin: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics 1605, Springer, Belin, 1995.

    MATH  Google Scholar 

  32. H. Wu, R. Li: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differ. Equations 19 (2003), 693–708.

    Article  MATH  Google Scholar 

  33. T. Zhang: Finite Element Methods for Partial Differential-Integral Equations. Science Press, Beijing, 2012. (In Chinese.)

    Google Scholar 

  34. T. Zhang, Y. P. Lin, R. J. Tait: On the finite volume element version of Ritz-Volterra projection and applications to related equations. J. Comput. Math. 20 (2002), 491–504.

    MathSciNet  MATH  Google Scholar 

  35. Q. D. Zhu, Q. Lin: The Superconvergence Theory of Finite Elements. Hunan Science and Technology Publishing House, Changsha, 1989. (In Chinese.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Zhang.

Additional information

Dedicated to Professor Ivo Babuška on his 90th birthday

This project was supported in part by the National Basic Research Program (2012CB 955804), the Major Research Plan of the National Natural Science Foundation of China (91430108), the National Natural Science Foundation of China (11371081 and 11171251), the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds (2013ZCX02), and the Major Program of Tianjin University of Finance and Economics (ZD1302).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, S. The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type. Appl Math 60, 573–596 (2015). https://doi.org/10.1007/s10492-015-0112-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0112-8

Keywords

MSC 2010

Navigation