Skip to main content
Log in

Optimal-order quadratic interpolation in vertices of unstructured triangulations

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth, A. Craig: A posteriori error estimators in the finite element method. Numer. Math. 60 (1992), 429–463.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ainsworth, J. Oden: A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley & Sons, Inc., Chichester, 2000.

    Google Scholar 

  3. I. S. Beresin, N. P. Shidkow: Numerische Methoden 1. VEB Deutscher Verlag der Wissenschaften, Berlin, 1970. (In German.)

    MATH  Google Scholar 

  4. J. Dalík: Quadratic interpolation polynomials in vertices of strongly regular triangulations. Finite Element Methods. Superconvergence, Postprocessing and Aposteriori Estimates. Lect. Notes Pure Appl. Math. 196 (M. Křížek et al., eds.). Marcel Dekker, Inc., 1998, pp. 85–94.

  5. J. Dalík: Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles. Arch. Math., Brno 35 (1999), 285–297.

    MATH  MathSciNet  Google Scholar 

  6. R. Durán, M. A. Muschietti, R. Rodríguez: On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59 (1991), 107–127.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Durán, R. Rodríguez: On the asymptotic exactness of Bank-Weiser’s estimator. Numer. Math. 62 (1992), 297–303.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Gasca, T. Sauer: On bivariate Hermite interpolation with minimal degree polynomials. SIAM J. Numer. Anal. 37 (2000), 772–798.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Křížek: Higher order global accuracy of a weighted averaged gradient of the Courant elements on irregular meshes. Proc. Conf. Finite Element Methods: Fifty Years of the Courant Element, Jyväskylä 1993 (M. Křížek et al., eds.). Marcel Dekker, New York, 1994, pp. 267–276.

    Google Scholar 

  10. M. Křížek, P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), 105–116.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Kufner, O. John, S. Fučík: Function Spaces. Academia, Prague, 1977.

    MATH  Google Scholar 

  12. X.-Z. Liang, C.-M. Lü, R.-Z. Feng: Properly posed sets of nodes for multivariate Lagrange interpolation in C s. SIAM J. Numer. Anal. 39 (2001), 587–595.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. A. Markov: Sur une question posée par Mendeleieff. IAN 62 (1889), 1–24.

    Google Scholar 

  14. P. M. Prenter: Splines and Variational Methods. John Wiley & Sons, Inc., New York, 1975.

    MATH  Google Scholar 

  15. J. S. Ovall: Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numer. Math. 102 (2006), 543–558.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Sauer, Y. Xu: On multivariate Lagrange interpolation. Math. Comput. 64 (1995), 1147–1170.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Don Wilhelmsen: A Markov inequality in several dimensions. J. Approx. Theory 11 (1974), 216–220.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Dalík.

Additional information

This work was supported by the grant GA ČR 103/05/0292.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalík, J. Optimal-order quadratic interpolation in vertices of unstructured triangulations. Appl Math 53, 547–560 (2008). https://doi.org/10.1007/s10492-008-0041-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-008-0041-x

Keywords

Navigation