Skip to main content
Log in

Heavy tailed durations of regional rainfall

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Durations of rain events and drought events over a given region provide important information about the water resources of the region. Of particular interest is the shape of upper tails of the probability distributions of such durations. Recent research suggests that the underlying probability distributions of such durations have heavy tails of hyperbolic type, across a wide range of spatial scales from 2 km to 120 km. These findings are based on radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region. The present work performs a nonparametric inference on the Pareto tail-index of wet and dry durations at each of those spatial scales, based on the same data, and compares it with conclusions based on the classical Hill estimator. The results are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Adler, R. E. Feldman, M. S. Taqqu (eds.): A Practical Guide to Heavy Tails. Statistical Techniques and Applications. Birkhäuser, Boston, 1998.

  2. S. Cheng, J. Pan: Asymptotic expansions of estimators for the tail index with applications. Scand. J. Stat. 25 (1998), 717–728.

    Article  MathSciNet  Google Scholar 

  3. S. Cheng, L. Peng: Confidence intervals for the tail index. Bernoulli 7 (2001), 751–760.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. de Haan, U. Stadtmüller: Generalized regular variation of second order. J. Austr. Math. Soc., Ser. A 61 (1996), 381–395.

    MATH  Google Scholar 

  5. C. De Michele, H. Pavlopoulos: The variance-scale plot of intermittent time series and the ranges of scales. Preprint of working paper. 2007.

  6. P. Doukhan, G. Oppenheim, M. S. Taqqu (eds.): Theory and Applications of Long-Range Dependence. Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  7. P. Embrechts, C. Klüppelberg, T. Mikosch: Modelling Extremal Events for Insurance and Finance. Springer, Berlin, 1997.

    MATH  Google Scholar 

  8. E. Foufoula-Georgiou: On scaling theories of space-time rainfall: Some recent results and open problems. Stochastic Methods in Hydrology: Rainfall, Landforms and Floods. Advanced Series on Statistical Sciences and Applied Probability, Vol. 7 (O. E. Barndorff-Nielsen, V. K. Gupta, V. Perez-Abreu, E. C. Waymire, eds.). World Scientific, Singapore, 1998, pp. 129–171.

    Google Scholar 

  9. J. Gritsis: On the probability distribution of the duration of dry and wet spells in processes of spatially averaged rain rate. Master thesis. Department of Statistics, Athens University of Economics and Business, Athens, 1997.

    Google Scholar 

  10. V. K. Gupta: Emergence of statistical scaling in floods on channel networks from complex runoff dynamics. Chaos Solitons Fractals 19 (2004), 357–365.

    Article  MATH  Google Scholar 

  11. V. K. Gupta, E. C. Waymire: Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res. 95 (1990), 1999–2009.

    Article  Google Scholar 

  12. V. K. Gupta, E. C. Waymire: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorology 32 (1993), 251–267.

    Article  Google Scholar 

  13. V. K. Gupta, E. C. Waymire: Spatial variability and scale invariance in hydrologic regionalization. In: Scale Dependence and Scale Invariance in Hydrology (G. Sposito, ed.). Cambridge University Press, Cambridge, 1998, pp. 88–135.

    Google Scholar 

  14. E. Haeusler, J. Segers: Assessing confidence intervals for the tail index by Edgeworth expansions for the Hill estimator. Bernoulli 13 (2007), 175–194.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Heath, S. Resnick, G. Samorodnitsky: Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. 23 (1998), 145–165.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Jurečková: Tests of tails based on extreme regression quantiles. Stat. Probab. Lett. 49 (2000), 53–61.

    Article  MATH  Google Scholar 

  17. J. Jurečková: Statistical tests on tail index of a probability distribution. METRON—International Journal of Statistics LXI (2003), 151–190.

    Google Scholar 

  18. J. Jurečková, H. L. Koul, J. Picek: Testing the tail index in autoregressive models. Annals of the Institute of Statistical Mathematics. To appear. Published online: 10.1007/s10463-007-0155-z.

  19. J. Jurečková, J. Picek: A class of tests on the tail index. Extremes 4 (2001), 165–183.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Jurečková, J. Picek: Estimates of the tail index based on nonparametric tests. Theory and Applications of Recent Robust Methods. Series: Statistics for Industry and Technology (M. Hubert, G. Pison, A. Struyf, S. Van Aelst, eds.). Birkhäuser, Basel, 2004, pp. 141–152.

    Google Scholar 

  21. B. Kedem, L. S. Chiu: Are rain rate processes self similar? Water Resources Research 23 (1987), 1816–1818.

    Article  Google Scholar 

  22. P. K. Kundu, T. L. Bell: A stochastic model of space-time variability of mesoscale rainfall: Statistics of spatial averages. Water Resources Research 39 (2003), 1328, doi:10.1029/2002WR001802.

    Article  Google Scholar 

  23. S. Lovejoy, B. B. Mandelbrot: Fractal properties of rain and a fractal model. Tellus 37A (1985), 209–232.

    Article  Google Scholar 

  24. S. Lovejoy, D. Schertzer: Generalized scale invariance in the atmosphere and fractal models of rain. Water Resources Research 21 (1985), 1233–1250.

    Article  Google Scholar 

  25. S. Lovejoy, D. Schertzer: Multifractals and rain. New Uncertainty Concepts in Hydrology and Water Resources (Z. W. Kunzewicz, ed.). Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  26. S. B. Lowen, M. C. Teich: Fractal renewal processes generate 1/f noise. Phys. Rev. E 47 (1993), 992–1001.

    Article  Google Scholar 

  27. S. B. Lowen, M. C. Teich: Fractal-Based Point Processes. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken, 2005.

    Google Scholar 

  28. B. B. Mandelbrot: The Fractal Geometry of Nature. W. H. Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  29. D. Marsan, S. Lovejoy, D. Schertzer: Causal space-time multifractal processes: Predictability and forecasting of rain fields. J. Geophys. Res. 101(D21) (1996), 26333–26346.

    Article  Google Scholar 

  30. T. Over, V. K. Gupta: Statistical analysis of meso-scale rainfall: Dependence of a random cascade generator on large-scale forcing. J. Appl. Meteor. 33 (1994), 1526–1542.

    Article  Google Scholar 

  31. T. Over, V. K. Gupta: A space-time theory of mesoscale rainfall using random cascades. J. Geophys. Res. 101 (1996), 26319–26331.

    Article  Google Scholar 

  32. H. Pavlopoulos, J. Gritsis: Wet and dry epoch durations of spatially averaged rain rate, their probability distributions and scaling properties. Environ. Ecol. Stat. 6 (1999), 351–380.

    Article  Google Scholar 

  33. H. Pavlopoulos, V. K. Gupta: On the intermittence of rainfields: A space-time approach. Technical Report No. 143. Department of Statistics, Athens University of Economics, Athens, 2001.

    Google Scholar 

  34. H. Pavlopoulos, V. K. Gupta: Scale invariance of regional wet and dry durations of rain fields: A diagnostic study. J. Geophys. Res. 108(D8) (2003), 8387, doi:10.1029/2002JD002763.

    Article  Google Scholar 

  35. J. Picek: Confidence intervals of the tail index. In: Proceedings in Computational Statistics (A. Rizzi, M. Vichi, eds.). Physica, Heidelberg, 2006, pp. 1301–1308.

    Google Scholar 

  36. J. Picek, J. Jurečková: A class of tests on the tail index using the modified extreme regression quantiles. ROBUST’2000 (J. Antoch, G. Dohnal, eds.). Union of Czech Mathematicians and Physicists, Prague, 2001, pp. 217–226.

    Google Scholar 

  37. F. Schmitt, S. Svannistsem, A. Barbosa: Modeling of rainfall time series using two-state renewal processes and multifractals. J. Geophys. Res. 103(D18) (1998), 181–194.

    Article  Google Scholar 

  38. D. A. Short, P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, O. W. Thiele: Shipboard radar rainfall patterns within the TOGA/COARE IFA. Bull. Am. Meteor. Soc. 78 (1997), 2817–2836.

    Article  Google Scholar 

  39. M. S. Taqqu, J. B. Levy: Using renewal processes to generate long-range dependence and high variability. Dependence in Probability and Statistics (E. Eberlein, M. S. Taqqu, eds.). Birkhäuser, 1986, pp. 73–89.

  40. Y. Tessier, S. Lovejoy, D. Schertzer: Universal multifractals: Theory and observations of rain and clouds. J. Appl. Meteor. 32 (1993), 223–250.

    Article  Google Scholar 

  41. W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson: Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at the source level (Extended Version). IEEE/ACM Transactions on Networking 5 (1997), 71–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Pavlopoulos.

Additional information

The authors express sincere thanks to the Mathematisches Forschungsinstitut Oberwolfach (MFO) for facilitating their collaboration under a “Research in Pairs” project hosted at MFO during March 5–25, 2006. The research of the second and third authors was supported by the project LC06024.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlopoulos, H., Picek, J. & Jurečková, J. Heavy tailed durations of regional rainfall. Appl Math 53, 249–265 (2008). https://doi.org/10.1007/s10492-008-0008-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-008-0008-y

Keywords

Navigation