Skip to main content
Log in

Evaluation on the effect of water environment treatment –A new exploration considering time based on the RCS

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The River Chief System (RCS), an innovative top-down and bottom-up water resource management system in China, is implemented to manage increasingly complex water environment issues. However, there has been a time lag in policy implementation. To accurately and scientifically assess the effect of RCS, a dynamic multiple-attribute decision-making method considering the time factor (DMADM) has been proposed. We have constructed the model consisting of 17 indicators from four aspects and determined the index weights and time weights by using the gray relation analysis method, the maximum entropy principle, and the subjective empowerment method. Finally, we applied the model to evaluate the water environment governance effect in the Taihu Basin from 2008 to 2020. The results have been ranked by possibility degree matrix, showing that: (1) The water environment in Taihu Basin maintains a steady improvement trend until 2014, except in Jiangsu Province;(2) The ranking result of the final comprehensive evaluation value is Shanghai ([0.334, 0.376]) ≻ Zhejiang ([0.316, 0.353]) ≻ Jiangsu ([0.305, 0.336]). Shanghai is far ahead with systematic pollution control measures, while Jiangsu lags due to the large fluctuation of pollutants (COD, NH3-N) in the wastewater. The study finds that the water environment management in Taihu Basin did improve over the past years, but failed to achieve the RCS governance goals at each stage. Enhancing coordination and cooperation and improving supervision mechanism for precise governance can better consolidate the results of RCS governance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Zhang R, Qian X, Yuan X, Ye R, Xia B, Wang Y (2012) Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management. Int J Environ Res Public Health 9(12):4504–4521

    Article  Google Scholar 

  2. Shen K, Jin G (2018) The policy effects of local governments’ environmental governance in China - a study based on the evolution of the “River-Director System”. Soc Sci China 269(5):93–116+207

  3. Chen T (2021) Constant system with changed mechanism—study on the origin and its mechanism of River Chief System. Hebei Acad J 41(6):169–177

    Google Scholar 

  4. Wang Y, Zhang X, Zhang W (2018) Theory and demand of fine management for river basin environment based on river chief system. China Water Resour 4:26–28

    Google Scholar 

  5. Qin B, Xu P, Wu Q, Luo L, Zhang Y (2007) Environmental issues of Lake Taihu. China Hydrobiologia 581(1):3–14

    Article  Google Scholar 

  6. Pires A, Morato J, Peixoto H, Botero V, Zuluaga L, Figueroa A (2017) Sustainability assessment of indicators for integrated water resources management. Sci Total Environ 578:139–147

    Article  Google Scholar 

  7. Wang G, Liu Z, Lang M, Chen X (2021) Performance evaluation of river -lake chief system and its implications. China Water Resour 2:15–18

    Google Scholar 

  8. Gao Y, Yu J, Song Y, Zhu G, Paerl HW, Qin B (2019) Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu. China Environ Sci Pollut Res Int 26(7):6898–6910

    Article  Google Scholar 

  9. Xu X, Wu F, Zhang L, Gao X (2020) Assessing the effect of the Chinese River Chief Policy for water pollution control under uncertainty—using Chaohu Lake as a case. Int J Environ Res Public Health 17(9):3103

    Article  Google Scholar 

  10. Wang J, Song Y, He Y (2020) Performance evaluation and obstacle factors analysis of river chief policy − Based on the survey of cities in Taihu Lake. Environ Protect Circ Econ 40(10):74–77

    Google Scholar 

  11. Yang C, Xu X, Yan X (2020) Construction of fuzzy evaluation index system for River-Chief System performance based on AHP method. In: Papers of the Eighth China Water Ecology Congress, Hohai University, pp 513–520

  12. Yang L, Xu C, Zhu H, Fu T (2023) Dynamics of the water environment in a water quantity-quality-soil model of China’s Yellow River basin: imbalance and driving factors. Environ Monit Assess 195(3):371

    Article  Google Scholar 

  13. Akram M, Waseem N, Liu P (2019) Novel Approach in Decision Making with m–Polar Fuzzy ELECTRE-I. Int J Fuzzy Syst 21(4):1117–1129

    Article  MathSciNet  Google Scholar 

  14. Jin F, Liu J, Zhou L, Martínez L (2021) Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory. Group Decis Negot 30(4):813–845

    Article  Google Scholar 

  15. Zhang Z, Liu Y, Li Y, Wang X, Li H, Yang H, Ding W, Liao Y, Tang N, He F (2022) Lake ecosystem health assessment using a novel hybrid decision-making framework in the Nam Co Qinghai-Tibet Plateau. Sci Total Environ 808:152087

    Article  Google Scholar 

  16. Islam ARMT, Pal SC, Chakrabortty R, Idris AM, Salam R, Islam MS, Zahid A, Shahid S, Ismail ZB (2022) A coupled novel framework for assessing vulnerability of water resources using hydrochemical analysis and data-driven models. J Clean Prod 336:130407

  17. Zhong Z, Chai L, Liu Y, Chen C (2010) Ecological security evaluation based on AHP of Lake Dongting. China Environ Sci S1:41–45

    Google Scholar 

  18. Niu F, Feng Z, Liu H (2018) A review on evaluating methods of regional resources and environment carrying capacity. Resour Sci 40(4):655–663

    Google Scholar 

  19. Hong G, Guo Y, Han W (2017) Effectiveness of green development and environmental governance —a two-stage non-radial directional distance function approach. Oper Res Manag Sci 26(5):142–150

    Google Scholar 

  20. Donghao W, Fangfei C, Jiaxin H, Guanning J, YaDong S, Aichun S (2022) The declining cyanobacterial blooms in Lake Taihu (China) in 2021: The interplay of nutrients and meteorological determinants. Ecol Indic 145(12):109590

  21. Xu Z (2008) On multi-period multi-attribute decision making. Knowl-Based Syst 21(2):164–171

    Article  Google Scholar 

  22. William H, Xu X, Prasanta KD (2010) Multi-criteria decision-making approaches for supplier evaluation and selection: a literature review. Eur J Oper Res 202(1):16–24

    Article  Google Scholar 

  23. Cengiz K, Gülçin B, Nüfer YA (2007) A two-phase multi-attribute decision-making approach for new product introduction. Inf Sci 177(7):1567–1582

    Article  Google Scholar 

  24. Huang J, Lin T, Hu D (2015) Quantitative selection research on the evaluation indicators system for the ecological construction based on network analysis: a case study of Fujian. Acta Ecol Sin 35(3):686–695

    Google Scholar 

  25. Wen T, Zhou Z, Zhao N, Wang J (2017) An analysis of the four-level linkage construction of water ecological civilization in Jiangxi province. China Water Resour 6:5–8

    Google Scholar 

  26. Xiang X, Li Q, Khan S, Khalaf OI (2021) Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ Impact Assess Rev 86:106515

  27. Vanham D, Hoekstra AY, Wada Y, Bouraoui F, de Roo A, Mekonnen MM, van de Bund WJ, Batelaan O, Pavelic P, Bastiaanssen WGM, Kummu M, Rockstrom J, Liu J, Bisselink B, Ronco P, Pistocchi A, Bidoglio G (2018) Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress.” Sci Total Environ 613–614:218–232

  28. Sun T, Zhang H, Wang Y, Meng X, Wang C (2010) The application of environmental Gini coefficient (EGC) in allocating wastewater discharge permit: The case study of watershed total mass control in Tianjin, China. Resour Conserv Recycl 54(9):601–608

    Article  Google Scholar 

  29. Zhou S, Du A, Bai M (2015) Application of the environmental Gini coefficient in allocating water governance responsibilities: a case study in Taihu Lake Basin. China. Water Sci Technol 71(7):1047–55

    Article  Google Scholar 

  30. Hwang JH, Park SH, Song CM (2020) A Study on an Integrated Water Quantity and Water Quality Evaluation Method for the Implementation of Integrated Water Resource Management Policies in the Republic of Korea. Water 12(9):2346

  31. Lumb A, Sharma TC, Bibeault J-F (2011) A Review of Genesis and Evolution of Water Quality Index (WQI) and Some Future Directions. Water Qual Expo Health 3(1):11–24

    Article  Google Scholar 

  32. Mohebbi MR, Saeedi R, Montazeri A, AzamVaghefi K, Labbafi S, Oktaie S, Abtahi M, Mohagheghian A (2013) Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecol Ind 30:28–34

    Article  Google Scholar 

  33. Zhang Y, Yao X, Qin B (2016) A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environ Sci Pollut Res 23(13):12811–21

    Article  Google Scholar 

  34. Qiang F, Sun T (2020) Comprehensive evaluation of benefits from environmental investment: take China as an example. Environ Sci Pollut Res 27:15292–15304

    Article  Google Scholar 

  35. Liu S, Lin Y (2011) Grey information theory and practical applications. Springer, London, pp 85–138

  36. Xu Z, Da Q (2001) Research on method for ranking interval numbers. J Syst Eng 6:94–96

    Google Scholar 

  37. Wang Q, Gu G, Higano Y (2006) Toward integrated environmental management for challenges in water environmental protection of Lake Taihu Basin in China. Environ Manage 37:579–588

    Article  Google Scholar 

  38. Wang X, Nikolaos K, Shen C, Wang H, Pang Y, Zhou Q (2016) Control of pollutants in the trans-boundary area of Taihu Basin, Yangtze Delta. Int J Environ Res Public Health 13(12):1253

    Article  Google Scholar 

  39. Hua L, Zuo Q (2006) A fuzzy mathematical method for water quality evaluation and its application. Yellow River 28(1):34–36

    Google Scholar 

  40. Xu Z, Chen J (2007) An interactive method for fuzzy multiple attribute group decision making. Inf Sci 177(1):248–263

    Article  MathSciNet  Google Scholar 

  41. Kou G, Wu W (2014) Multi-criteria decision analysis for emergency medical service assessment. Ann Oper Res 223(1):239–254

    Article  MathSciNet  Google Scholar 

  42. Ju Y, Wang A, Liu X (2012) Evaluating emergency response capacity by fuzzy AHP and 2-tuple fuzzy linguistic approach. Expert Syst Appl 39(8):6972–6981

    Article  Google Scholar 

  43. Xu Z, Da Q (2003) Possible degree method of interval number sorting and its application. J Syst Eng 18(1):67–70

    Google Scholar 

  44. Wu Z, Wang X, Chen Y, Cai Y, Deng J (2018) Assessing river water quality using water quality index in Lake Taihu Basin. China Sci Total Environ 612:914–922

    Article  Google Scholar 

  45. Shah J, Ihsan U, Sardar K, Said M, Seema AK, Tariq K (2020) Evaluation of the Swat River, Northern Pakistan, water quality using multivariate statistical techniques and water quality index (WQI) model. Environ Sci Pollut Res 7(31):38545–38558

    Google Scholar 

  46. Lin X, Yin C, Zhang G, Liu Y, Niu C, Han F (2021) Water environment status and comprehensive management measures of watershed in Beijing. Water Resour Protect 37(5):140–146

    Google Scholar 

  47. Zhang H, Li W, Miao P, Sun B, Kong F (2020) Risk grade assessment of sudden water pollution based on analytic hierarchy process and fuzzy comprehensive evaluation. Environ Sci Pollut Res 27(1):469–481

    Article  Google Scholar 

Download references

Acknowledgements

This paper was partly supported by the National Natural Science Foundation of China under Grant 21BGL289, and the Fundamental Research Funds for the Central Universities(B220207023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Wen or Yejun Xu.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The initial decision matrices R k

Tables 11, 12, 13, 14, 15, 16, 17

Table 11 The initial decision matric R1
Table 12 The initial decision matric R2
Table 13 The initial decision matric R3
Table 14 The initial decision matric R4
Table 15 The initial decision matric R5
Table 16 The initial decision matric R6
Table 17 The initial decision matric R7

Appendix B: The normalized decision matrices \(\widetilde{{\mathrm{R}}_{\mathrm{k}}}\)

Tables 18, 19, 20, 21, 22, 23, 24

Table 18 The normalized decision matric \(\widetilde{{\mathrm{R}}_{1}}\)
Table 19 The normalized decision matric \(\widetilde{{\mathrm{R}}_{2}}\)
Table 20 The normalized decision matric \(\widetilde{{\mathrm{R}}_{3}}\)
Table 21 The normalized decision matric \(\widetilde{{\mathrm{R}}_{4}}\)
Table 22 The normalized decision matric \(\widetilde{{\mathrm{R}}_{5}}\)
Table 23 The normalized decision matric \(\widetilde{{\mathrm{R}}_{6}}\)
Table 24 The normalized decision matric \(\widetilde{{\mathrm{R}}_{7}}\)

Appendix C 1: The positive distance matrix \({\mathrm{D}}_{\mathrm{k}}\)

Tables 25, 26, 27, 28, 29, 30, 31

Table 25 The positive distance matrix \({\mathrm{D}}_{1}\)
Table 26 The positive distance matrix \({\mathrm{D}}_{2}\)
Table 27 The positive distance matrix \({\mathrm{D}}_{3}\)
Table 28 The positive distance matrix \({\mathrm{D}}_{4}\)
Table 29 The positive distance matrix \({\mathrm{D}}_{5}\)
Table 30 The positive distance matrix \({\mathrm{D}}_{6}\)
Table 31 The positive distance matrix \({\mathrm{D}}_{7}\)

Appendix C 2: The negative distance matrix \(\widetilde{{\mathrm{D}}_{\mathrm{k}}}\)

Tables 32, 33, 34, 35, 36, 37, 38

Table 32 The negative distance matrix \(\widetilde{{\mathrm{D}}_{1}}\)
Table 33 The negative distance matrix \(\widetilde{{\mathrm{D}}_{2}}\)
Table 34 The negative distance matrix \(\widetilde{{\mathrm{D}}_{3}}\)
Table 35 The negative distance matrix \(\widetilde{{\mathrm{D}}_{4}}\)
Table 36 The negative distance matrix \(\widetilde{{\mathrm{D}}_{5}}\)
Table 37 The negative distance matrix \(\widetilde{{\mathrm{D}}_{6}}\)
Table 38 The negative distance matrix \(\widetilde{{\mathrm{D}}_{7}}\)

Appendix D: Evaluation index weights of water environment treatment effect in Taihu Lake

ωj/Year

2008

2010

2012

2014

2016

2018

2020

ω1

0.060

0.060

0.060

0.060

0.059

0.060

0.060

ω2

0.066

0.064

0.062

0.062

0.062

0.062

0.064

ω3

0.060

0.059

0.059

0.059

0.059

0.059

0.059

ω4

0.060

0.059

0.059

0.059

0.059

0.059

0.059

ω5

0.059

0.059

0.059

0.059

0.059

0.059

0.059

ω6

0.060

0.060

0.060

0.060

0.061

0.061

0.060

ω7

0.060

0.059

0.061

0.061

0.062

0.062

0.062

ω8

0.061

0.062

0.064

0.065

0.067

0.069

0.070

ω9

0.065

0.069

0.061

0.061

0.063

0.062

0.059

ω10

0.063

0.063

0.060

0.059

0.060

0.059

0.059

ω11

0.060

0.059

0.059

0.059

0.059

0.059

0.059

ω12

0.062

0.064

0.072

0.068

0.064

0.062

0.060

ω13

0.060

0.059

0.059

0.059

0.059

0.059

0.059

ω14

0.061

0.061

0.061

0.061

0.061

0.062

0.062

ω15

0.041

0.047

0.049

0.049

0.048

0.049

0.049

ω16

0.055

0.049

0.048

0.049

0.050

0.049

0.049

ω17

0.049

0.048

0.050

0.049

0.049

0.049

0.053

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, S., Yu, J. et al. Evaluation on the effect of water environment treatment –A new exploration considering time based on the RCS. Appl Intell 54, 4277–4299 (2024). https://doi.org/10.1007/s10489-023-05218-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05218-8

Keywords

Navigation