Skip to main content
Log in

Analysis of a production system of green products considering single-level trade credit financing via a parametric approach of intervals and meta-heuristic algorithms

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The use of chemicals and preservatives during the production of most daily-used products has increased rapidly over the last few decades. In turn, manufacturers, to improve the sustainability of a manufacturing unit in the current highly competitive market, are obliged to provide various facilities to their customers. However, estimating the best optimal decision for manufacturing companies seems like a daunting task amid highly uncertain market conditions. By shedding more light on these facts and considering the gaps in the existing literature on production inventory, this work aims to incorporate a production model which is concerned with the factors mentioned above, so that it can be beneficial for a manufacturer. This work involves the demonstration of an imperfect green production system under single-layer full-trade credit financing and partial backlog shortages using interval flexibility. Based on the credit period lengths provided by the manufacturer to the consumers, three distinct cases have arisen and for each case, the average profit of the system appears to be an interval valued optimal control problem, and several theorems are evaluated to obtain analytical forms of respective objective functions of each case. Additionally, to test the effect of different credit lengths on optimal policy and to examine the feasibility of each case, a numerical example is solved using the Equilibrium Optimizer (EO) algorithm. Finally, a sensitivity experiment is performed and the results obtained from the simulation are shown graphically to gain some managerial insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

There is no data available.

References

  1. Luh YP, Chu CH, Pan CC (2010) Data management of green product development with generic modularized product architecture. Comput Ind 61(3):223–234

    Article  Google Scholar 

  2. Lin RJ, Tan KH, Geng Y (2013) Market demand, green product innovation, and firm performance: evidence from Vietnam motorcycle industry. J Clean Prod 40:101–107

    Article  Google Scholar 

  3. Zhang CT, Wang HX, Ren ML (2014) Research on pricing and coordination strategy of green supply chain under hybrid production mode. Comput Ind Eng 72:24–31

    Article  Google Scholar 

  4. Entezaminia A, Heydari M, Rahmani D (2016) A multi-objective model for multi-product multi-site aggregate production planning in a green supply chain: Considering collection and recycling centers. J Manuf Syst 40:63–75

    Article  Google Scholar 

  5. Bai C, Shah P, Zhu Q, Sarkis J (2018) Green product deletion decisions: An integrated sustainable production and consumption approach. Ind Manag Data Syst 118(2):349–389

    Article  Google Scholar 

  6. Saxena S, Gupta RK, Singh V, Singh P, Mishra NK (2018) Environmental Sustainability with eco-friendly green inventory model under Fuzzy logics considering carbon emission. JETIR 5(11):1–12

    Google Scholar 

  7. Yavari M, Geraeli M (2019) Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods. J Clean Prod 226:282–305

    Article  Google Scholar 

  8. Sana SS (2020) Price competition between green and non green products under corporate social responsible firm. J Retail Consum Serv 55:102118

    Article  Google Scholar 

  9. Sarkar B, Ullah M, Sarkar M (2021) Environmental and economic sustainability through innovative green products by remanufacturing. J Clean Prod 2021:129813

    Google Scholar 

  10. Ghosh PK, Manna AK, Dey JK, Kar S (2021) Supply chain coordination model for green product with different payment strategies: A game theoretic approach. J Clean Prod 290:125734

    Article  Google Scholar 

  11. Kundu A, Guchhait P, Maiti M, Castillo O (2021) Inventory of a deteriorating green product with preservation technology cost using a hybrid algorithm. Soft Comput 25(17):11621–11636

    Article  Google Scholar 

  12. Paul A, Pervin M, Roy SK, Maculan N, Weber GW (2022) A green inventory model with the effect of carbon taxation. Ann Oper Res 309(1):233–248

    Article  MathSciNet  MATH  Google Scholar 

  13. Jauhari WA, Wangsa ID (2022) A Manufacturer-Retailer Inventory Model with Remanufacturing, Stochastic Demand, and Green Investments. Process Integr Optim Sustain:1–21

  14. Rosenblatt MJ, Lee HL (1986) Economic production cycles with imperfect production processes. IIE Trans 18(1):48–55

    Article  Google Scholar 

  15. Salameh MK, Jaber MY (2000) Economic production quantity model for items with imperfect quality. Int J Prod Econ 64(1-3):59–64

    Article  Google Scholar 

  16. Chiu SW, Gong DC (2004) Determining the optimal lot size for the finite production model with an imperfect rework process of defective items. J Inf Optim Sci 25(1):105–119

    MathSciNet  MATH  Google Scholar 

  17. Goyal SK, Cárdenas-Barrón LE (2005) Economic production quantity with imperfect production system. Ind Eng J 34(2):33–36

    Google Scholar 

  18. Sana SS, Goyal SK, Chaudhuri K (2007) An imperfect production process in a volume flexible inventory model. Int J Prod Econ 105(2):548–559

    Article  Google Scholar 

  19. Bhunia AK, Shaikh AA, Cárdenas-Barrón LE (2017) A partially integrated production-inventory model with interval valued inventory costs, variable demand and flexible reliability. Appl Soft Comput 55:491–502

    Article  Google Scholar 

  20. Shah NH, Patel DG, Shah DB (2018) EPQ model for returned/reworked inventories during imperfect production process under price-sensitive stock-dependent demand. Oper Res 18(2):343–359

    Google Scholar 

  21. Vercraene S, Gayon JP (2013) Optimal control of a production-inventory system with product returns. Int J Prod Econ 142(2):302–310

    Article  Google Scholar 

  22. Khatua D, Maity K, Kar S (2019) A Fuzzy Optimal Control Inventory Model of Product–Process Innovation and Fuzzy Learning Effect in Finite Time Horizon. Int J Fuzzy Syst 21(5):1560–1570

    Article  MathSciNet  Google Scholar 

  23. Das B, Maiti M (2013) Fuzzy stochastic inequality and equality possibility constraints and their application in a production-inventory model via optimal control method. J Comput Sci 4(5):360–369

    Article  Google Scholar 

  24. Maity K, Maiti M (2007) Possibility and necessity constraints and their defuzzification—a multi-item production-inventory scenario via optimal control theory. Eur J Oper Res 177(2):882–896

    Article  MATH  Google Scholar 

  25. Das S, Mondal R, Shaikh AA, Bhunia AK (2022) An application of control theory for imperfect production problem with carbon emission investment policy in interval environment. J Frankl Inst 359(5):1925–1970

    Article  MathSciNet  MATH  Google Scholar 

  26. Goyal SK (1985) Economic order quantity under conditions of permissible delay in payments. J Oper Res Soc:335–338

  27. Petersen MA, Rajan RG (1997) Trade credit: theories and evidence. Rev Financ Stud 10(3):661–691

    Article  Google Scholar 

  28. Ge Y, Qiu J (2007) Financial development, bank discrimination and trade credit. J Bank Financ 31(2):513–530

    Article  Google Scholar 

  29. Teng JT, Chang CT (2009) Optimal manufacturer’s replenishment policies in the EPQ model under two levels of trade credit policy. Eur J Oper Res 195(2):358–363

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen SC, Cárdenas-Barrón LE, Teng JT (2014) Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. Int J Prod Econ 155:284–291

    Article  Google Scholar 

  31. Sundara Rajan R, Uthayakumar R (2017) Analysis and optimization of an EOQ inventory model with promotional efforts and back ordering under delay in payments. J Manag Anal 4(2):159–181

    Google Scholar 

  32. Wu J, Chang CT, Teng JT, Lai KK (2017) Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date. Int J Prod Econ 193:343–351

    Article  Google Scholar 

  33. Ouyang LY, Chang CT (2013) Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging. Int J Prod Econ 144(2):610–617

    Article  Google Scholar 

  34. Tiwari S, Cárdenas-Barrón LE, Goh M, Shaikh AA (2018) Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. Int J Prod Econ 200:16–36

    Article  Google Scholar 

  35. Mishra U, Wu JZ, Tseng ML (2019) Effects of a hybrid-price-stock dependent demand on the optimal solutions of a deteriorating inventory system and trade credit policy on re-manufactured product. J Clean Prod 241:118282

    Article  Google Scholar 

  36. Shaikh AA, Cardenas-Barron LE, Manna AK, Cespedes-Mota A (2020) An economic production quantity (EPQ) model for a deteriorating item with partial trade credit policy for price dependent demand under inflation and reliability. Yugoslav J Oper Res 31(2)):139–151

    MathSciNet  Google Scholar 

  37. Ghosh PK, Manna AK, Dey JK, Kar S (2021) An EOQ model with backordering for perishable items under multiple advanced and delayed payments policies. J Manag Anal:1–32

  38. Bi G, Wang P, Wang D, Yin Y (2021) Optimal credit period and ordering policy with credit-dependent demand under two-level trade credit. Int J Prod Econ 242:108311

    Article  Google Scholar 

  39. Chang HJ, Dye CY (2001) An inventory model for deteriorating items with partial backlogging and permissible delay in payments. Int J Syst Sci 32(3):345–352

    Article  MathSciNet  MATH  Google Scholar 

  40. Papachristos S, Skouri K (2003) An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging. Int J Prod Econ 83(3):247–256

    Article  MATH  Google Scholar 

  41. Rong M, Mahapatra NK, Maiti M (2008) A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time. Eur J Oper Res 189(1):59–75

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang HL, Teng JT, Chern MS (2010) An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. Int J Prod Econ 123(1):8–19

    Article  Google Scholar 

  43. Bhunia AK, Shaikh AA, Sharma G, Pareek S (2015) A two storage inventory model for deteriorating items with variable demand and partial backlogging. J Ind Prod Eng 32(4):263–272

    Google Scholar 

  44. Sundararajan R, Prabha M, Jaya R (2019) An inventory model for non-instantaneous deteriorating items with multivariate demand and backlogging under inflation. J Manag Anal 6(3):302–322

    Google Scholar 

  45. Adak S, Mahapatra GS (2020) Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration. Ann Oper Res:1–21

  46. Guchhait P, Maiti MK, Maiti M (2013) Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process. Int J Prod Econ 144(1):180–188

    Article  Google Scholar 

  47. Chowdhury RR, Ghosh SK, Chaudhuri KS (2014) An inventory model for perishable items with stock and advertisement sensitive demand. Int J Manag Sci Eng Manag 9(3):169–177

    Google Scholar 

  48. Roul JN, Maity K, Kar S, Maiti M (2019) Multi-item Optimal control problem with fuzzy costs and constraints using Fuzzy variational principle. RAIRO-Oper Res 53(3):1061–1082

    Article  MathSciNet  MATH  Google Scholar 

  49. Rahman MS, Manna AK, Shaikh AA, Bhunia AK (2020) An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization. Int J Intell Syst 35(8):1280–1326

    Article  Google Scholar 

  50. Nath BK, Sen N (2021) A partially backlogged two-warehouse EOQ model with non-instantaneous deteriorating items, price and time dependent demand and preservation technology using interval number. Int J Math Oper Res 20(2):149–181

    Article  MathSciNet  MATH  Google Scholar 

  51. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  52. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, pp 240–249

    Chapter  Google Scholar 

  53. Rao RV (2016) Teaching-learning-based optimization algorithm. In: Teaching learning based optimization algorithm. Springer, Cham, pp 9–39

    Chapter  Google Scholar 

  54. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50

    Article  Google Scholar 

  56. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  57. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  58. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  59. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic 27(4):1053–1073

    Article  Google Scholar 

  60. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  61. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34

    Article  Google Scholar 

  62. Bhunia AK, Shaikh AA (2015) An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies. Appl Math Comput 256:831–850

    MathSciNet  MATH  Google Scholar 

  63. Mondal R, Das S, Das SC, Shaikh AA, Bhunia AK (2022) Pricing strategies and advance payment-based inventory model with partially backlogged shortages under interval uncertainty. Int J Syst Sci Oper Logist:1–25

  64. Khalilpourazari S, Pasandideh SHR, Niaki STA (2019) Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders. Soft Comput 23(22):11671–11698

    Article  Google Scholar 

  65. Bhunia AK, Samanta SS (2014) A study of interval metric and its application in multi-objective optimization with interval objectives. Comput Ind Eng 74:169–178

    Article  Google Scholar 

  66. Abdel-Basset M, Mohamed R, Mirjalili S, Chakrabortty RK, Ryan MJ (2020) Solar photovoltaic parameter estimation using an improved equilibrium optimizer. Sol Energy 209:694–708

    Article  Google Scholar 

  67. Micev M, Ćalasan M, Oliva D (2021) Design and robustness analysis of an Automatic Voltage Regulator system controller by using Equilibrium Optimizer algorithm. Comput Electr Eng 89:106930

    Article  Google Scholar 

  68. Soliman MA, Al-Durra A, Hasanien HM (2021) Electrical parameters identification of three-diode photovoltaic model based on equilibrium optimizer algorithm. IEEE Access 9:41891–41901

    Article  Google Scholar 

  69. Shankar N, Saravanakumar N, Kumar C, Kamatchi Kannan V, Indu Rani B (2021) Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models. J Comput Electron 20(4):1560–1587

    Article  Google Scholar 

  70. Wunnava A, Naik MK, Panda R, Jena B, Abraham A (2020) A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Eng Appl Artif Intell 94:103836

    Article  Google Scholar 

  71. Houssein EH, Çelik E, Mahdy MA, Ghoniem RM (2022) Self-adaptive Equilibrium Optimizer for solving global, combinatorial, engineering, and Multi-Objective problems. Expert Syst Appl 195:116552

    Article  Google Scholar 

  72. Zayed ME, Zhao J, Li W, Elsheikh AH, Abd Elaziz M (2021) A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector. Energy 235:121289

    Article  Google Scholar 

  73. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  74. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  75. Ramezanadeh M, Heidari M, Fard OS, Borzabadi AH (2015) On the interval differential equation: novel solution methodology. Adv Differ Equations 2015(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  76. Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal Theory, Methods Appl 71(3-4):1311–1328

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

First author sincerely acknowledges the financial support given by University Grants Commission under UGC JRF Fellowship (File no. 16-6(DEC.2018)/2019(NET/CSIR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Konstantaras.

Ethics declarations

Conflict of Interest

All authors declare that there is no conflict of interest in this paper.

Credit Statement

Subhajit Das: Conceptualization, derivations, investigation, and writing

Amalesh Kumar Manna: Conceptualization, derivations, investigation, and writing.

Ali Akbar Shaikh: Model analysis, checked the validation of model and solutions, and supervision.

Ioannis Konstantaras: Model analysis, checked the validation of model and solutions, and supervision.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Algebra of intervals (Ramezanadeh et al. [75]).

Let, \( {I}_c=\left\{\left[{a}_L,{a}_U\right]:{a}_L,{a}_U\in \mathbb{R}\ \mathsf{and}{a}_L\le {a}_U\right\}. \)

Now the parametric forms of an element [aL, aU] ∈ Icare defined as follows:

  1. (i)

    Increasing parametric form (IPF): [aL, aU] = {a(ξ) = aL + ξ(aU − aL) : ξ ∈ [0, 1] }

  2. (ii)

    Decreasing parametric form (DPF): [aL, aU] = {a(ξ) = aU + ξ(aL − aU) : ξ ∈ [0, 1] }.

Therefore, the set of all compact intervals in parametric form is denoted by IP and it is defined by

$$ {I}_P=\left\{a\left(\xi \right):a\left(\xi \right)\;\mathsf{is}\ \mathsf{IPF}\;\left(\ \mathsf{or}\ \mathsf{DPF}\right)\ \mathsf{of}\ \left[{a}_L,{a}_U\right],\forall \xi \in \left[0,1\right]\;\mathsf{and}\forall \left[{a}_L,{a}_U\right]\in {I}_c\right\} $$

Clearly, the sets Ic and IP are equivalent.

Definition A.1

(Ramezanadeh et al. [75]). Let I1 = {a(ξ) : ξ ∈ [0, 1]}, I2 = {b(ξ) : ξ ∈ [0, 1]} ∈ Ip, and let μ ∈ . Different arithmetic operations on IPare defined as follows:

  1. (i)

    Addition: I1 + I2 = {a(ξ1) + b(ξ2) : ξ1, ξ2 ∈ [0, 1]}

  2. (ii)

    Subtraction: I1 − I2 = {a(ξ1) − b(ξ2) : ξ1, ξ2 ∈ [0, 1]}

  3. (iii)

    Multiplication :I1I2 = {a(ξ1)b(ξ2) : ξ1, ξ2 ∈ [0, 1]}

  4. (iv)

    Division: \( \raisebox{1ex}{${I}_1$}\!\left/ \!\raisebox{-1ex}{${I}_2$}\right.=\left\{\frac{a\left({\xi}_1\right)}{b\left({\xi}_2\right)}:{\xi}_1,{\xi}_2\in \left[0,1\right]\right\}, \) provided 0 ∉ I2.

  5. (v)

    Parametric difference: I1pI2 = {a(ξ) − b(ξ) : ξ ∈ [0, 1]}

  6. (vi)

    Scalar Multiplication: μI1 = {μa(ξ) : ξ ∈ [0, 1]}

  7. (vii)

    Equality: \( {I}_1={I}_2\kern0.24em \mathsf{if}\kern0.17em \mathsf{and}\kern0.17em \mathsf{only}\kern0.17em \mathsf{if}\;a\left(\xi \right)=b\left(\xi \right),\mathsf{for}\;\;\mathsf{all}\;\;\xi \in \left[0,1\right]. \)

Definition A.2

(Ramezanadeh et al. [75]). Let I1 = [aL, aU], I2 = [bL, bU] ∈ Ic, and their parametric representations I1 = {a(ξ) : ξ ∈ [0, 1]}, I2 = {b(ξ) : ξ ∈ [0, 1]} ∈ Ip and let μ ∈ . The different arithmetic operations on Icare defined as follows:

  1. (i)

    \( {I}_1+{I}_2=\left[\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\min}\left(a\left({\xi}_1\right)+b\left({\xi}_2\right)\right),\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\max}\left(a\left({\xi}_1\right)+b\left({\xi}_2\right)\right)\right] \)

  2. (ii)

    \( {I}_1-{I}_2=\left[\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\min}\left(a\left({\xi}_1\right)-b\left({\xi}_2\right)\right),\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\max}\left(a\left({\xi}_1\right)-b\left({\xi}_2\right)\right)\right] \)

  3. (iii)

    \( {I}_1{I}_2=\left[\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\min}\left(a\left({\xi}_1\right)b\left({\xi}_2\right)\right),\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\max}\left(a\left({\xi}_1\right)b\left({\xi}_2\right)\right)\right] \)

  4. (iv)

    \( \raisebox{1ex}{${I}_1$}\!\left/ \!\raisebox{-1ex}{${I}_2$}\right.=\left[\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\min}\left(\frac{a\left({\xi}_1\right)}{b\left({\xi}_2\right)}\right),\underset{\xi_1,{\xi}_2\in \left[0,1\right]}{\max}\left(\frac{a\left({\xi}_1\right)}{b\left({\xi}_2\right)}\right)\right] \) provided 0 ∉ I2.

  5. (v)

    \( {I}_1{-}_p{I}_2=\left[\underset{\xi \in \left[0,1\right]}{\min}\left(a\left(\xi \right)-b\left(\xi \right)\right),\underset{\xi \in \left[0,1\right]}{\max}\left(a\left(\xi \right)-b\left(\xi \right)\right)\right] \)

  6. (vi)

    \( \mu {I}_1=\left[\underset{\xi_1\in \left[0,1\right]}{\min}\left(\mu a\left({\xi}_1\right)\right),\underset{\xi_1\in \left[0,1\right]}{\max}\left(\mu a\left({\xi}_1\right)\right)\right]. \)

Definition A.3

(Stefanini and Bede [76]). Let an interval-valued function G : D ⊆  → Icbe defined asG(t) = [GL(t), GU(t)], where GL, GU : D ⊆  →  withGL(t) ≤ GU(t), forallt ∈ D.

The parameterized form (IPF) or p-interval-valued function of G(t)is defined as G : D ⊆ n → Ip and it is defined by \( G(t)=\left\{\overset{\sim }{G}\left(t,\xi \right)={G}_L(t)+\xi \left({G}_U(t)-{G}_L(t)\right):\xi \in \left[0,1\right]\right\} \), forallt ∈ D.

DefinitionA.4

(Stefanini and Bede [76]). The function G(t) = [GL(t), GU(t)] is said to be p-differentiable at t0 if \( {\lim}_{h\to 0}\frac{G\left({t}_0+h\right){-}_pG\left({t}_0\right)}{h} \) exists finitely. The p-derivative of G at t0 is denoted by G(t0),

Definition A.5

Let G : [a, b] → Kp be a p-interval-valued function. Then G is integrable over [a, b] if for every fixedξ ∈ [0, 1], the parameterized function \( \overset{\sim }{G}\left(t,\xi \right) \) is integrable over [a, b] as usual sense and\( \int_a^bG(t) dt=\left\{\int_a^b\overset{\sim }{G}\left(t,\xi \right)\; dt:\xi \in \left[0,1\right]\right\}. \)

Definition A.6

(Rahman et al. [49]). Let Y : [a, b] → Ic be a p-differentiable interval valued function of a real single variable and let F : [a, b] × Ic → Ic be a continuous interval valued function. Then an interval differential equation is defined as follows:

$$ \frac{dY}{dt}=F\left(t,Y\right),t\in \left[a,b\right] $$

where

$$ Y(t)=\left[{Y}_L(t),{Y}_U(t)\right]\kern0.24em \;\mathrm{and}\;\;\;F\left(t,Y\right)=\left[{F}_L\left(t,Y\right),{F}_U\left(t,Y\right)\right]. $$
(A.1)

Now the parametric representation of (A.1) is given below:

$$ {\displaystyle \begin{array}{c}\frac{d\overset{\sim }{Y}\left(t,{\xi}_1\right)}{dt}=\overset{\sim }{F}\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right),{\xi}_2\right),t\in \left[a,b\right]\kern0.24em \mathrm{and}\;\;{\xi}_1,{\xi}_2\in \left[0,1\right]\\ {}\begin{array}{c}\mathrm{where}\kern0.24em Y(t)=\left\{\overset{\sim }{Y}\left(t,{\xi}_1\right)={Y}_L(t)+{\xi}_1\left({Y}_U(t)-{Y}_L(t)\right):{\xi}_1\in \left[0,1\right]\right\}\kern0.36em \\ {}\mathrm{and}\kern0.36em F\left(t,Y\right)=\left\{\overset{\sim }{F}\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right),{\xi}_2\right)={F}_L\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right)\right)+{\lambda}_2\left({F}_U\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right)\right)-{F}_L\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right)\right)\right):{\xi}_1,{\xi}_2\in \left[0,1\right]\right\}.\end{array}\end{array}} $$
(A.2)

Proposition A.1

(Rahman et al. [49]). The Eqs. (A.1) and (A.2) are equivalent.

Proof

Now, the parametric representation of Eq. (A.1) is given by

$$ \left\{\frac{d\overset{\sim }{Y}\left(t,{\xi}_1\right)}{dt}:{\xi}_1\in \left[0,1\right]\right\}=\left\{\overset{\sim }{F}\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right),{\xi}_2\right):{\xi}_1,{\xi}_2\in \left[0,1\right]\right\} $$

By Definition A.2, it gives

\( \frac{d\overset{\sim }{Y}\left(t,{\xi}_1\right)}{dt}=\overset{\sim }{F}\left(t,\overset{\sim }{Y}\left(t,{\xi}_1\right),{\xi}_2\right),{\xi}_1,{\xi}_2\in \left[0,1\right] \)which is the Eq. (A.2).

The converse part is straightforward.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Manna, A.K., Shaikh, A.A. et al. Analysis of a production system of green products considering single-level trade credit financing via a parametric approach of intervals and meta-heuristic algorithms. Appl Intell 53, 19532–19562 (2023). https://doi.org/10.1007/s10489-023-04493-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04493-9

Keywords

Navigation