Skip to main content
Log in

A self-organizing fuzzy neural network modeling approach using an adaptive quantum particle swarm optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To enhance the model’s flexibility, this study proposes a self-organizing fuzzy neural network (SOFNN) modeling methodology based on an adaptive quantum particle swarm optimization algorithm (AQPSO). First, to address the shortcoming of premature convergence of the QPSO algorithm when dealing with complex problems and to acquire the best balance between the exploration and exploitation of the algorithm, a cooperative adaptive adjustment strategy for attractor, coefficient, and boundary is designed. Second, to obtain a suitable number of fuzzy rules and optimal premise parameters, the fitness function is constructed using system accuracy (RMSE) and network complexity (rule number) in the learning process. Simultaneously, an enhanced fuzzy recursive least square (FRLS) algorithm is designed to estimate the output weights of the FNN to identify the nonlinear dynamical system effectively. Furthermore, to ensure that the presented AQPSO-SOFNN can efficiently solve practical engineering problems, Lyapunov stability theory is adopted to prove its convergence in detail. Finally, four testing cases, including identification of Mackey-Glass time series, modeling of concrete compressive strength (CCS), prediction of carbon dioxide, and soft-sensing of effluent total phosphorus (TP), are utilized to verify the usefulness of the proposed AQPSO-SOFNN-based modeling approach. The simulation results of four testing cases demonstrate that the designed AQPSO-SOFNN has high prediction accuracy with a parsimonious network topology. The MATLAB source codes of AQPSO-SOFNN and other comparison algorithms can be downloaded from https://github.com/hyitzhb/AQPSO-SOFNN.git.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Github repository, https://github.com/hyitzhb/AQPSO-SOFNN.git.

References

  1. Song H, Miao C, Roel W (2010) Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series. IEEE Trans Fuzzy Syst 18(2):233–250

    Google Scholar 

  2. Kwon OM, Park MJ, Lee SM (2013) Stability for neural networks with time-varying delays via some new approaches. IEEE Trans Neural Netw Learn Syst 24(2):181–193

    Article  Google Scholar 

  3. Zhou HB, Li Y, Zhang QY, Xu HY, Su Y (2022) Soft-sensing of effluent total phosphorus using adaptive recurrent fuzzy neural network with Gustafson-Kessel clustering. Expert Syst Appl 203:117589

    Article  Google Scholar 

  4. Fei J, Wang Z, Liang X, Feng Z, Xue Y (2022) Fractional sliding mode control for micro gyroscope based on multilayer recurrent fuzzy neural network. IEEE Trans Fuzzy Syst 30(6):1712–1721

    Article  Google Scholar 

  5. Dong C, Yu Z, Chen X, Chen H, Huang Y, Huang Q (2022) Adaptability control towards complex ground based on fuzzy logic for humanoid robots. IEEE Trans Fuzzy Syst 30(6):1574–1584

    Article  Google Scholar 

  6. Khanmohammadi E, Safari H, Zandieh M, Malmir B, Tirkolaee E.B (2022) Development of dynamic balanced scorecard using case-based reasoning method and adaptive neuro-fuzzy inference system IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2022.3140291

  7. Tirkolaee EB, Aydin NS (2022) Integrated design of sustainable supply chain and transportation network using a fuzzy bi-level decision support system for perishable products. Expert Syst Appl 195:116628

    Article  Google Scholar 

  8. Juang CF, Hsieh CD (2010) A locally recurrent fuzzy neural network with support vector regression for dynamic-system modeling. IEEE Trans Fuzzy Syst 18(2):261–273

    Google Scholar 

  9. He W, Dong Y (2018) Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans Neural Netw Learn Syst 29(4):1174–1186

    Article  Google Scholar 

  10. Pratama M, Lu J, Lughofer E (2017) An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 25(5):1175–1192

    Article  Google Scholar 

  11. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  12. Ebadzadeh MM, Salimi-Badr A (2015) CFNN: correlated fuzzy neural network. Neurocomputing 148:430–444

    Article  Google Scholar 

  13. Malek H, Ebadzadeh MM, Rahmati M (2012) Three new fuzzy neural networks learning algorithms based on clustering, training error and genetic algorithm. Appl Intell 37(2):280–289

    Article  Google Scholar 

  14. Teslic L, Hartmann B, Nelles O (2011) Nonlinear system identification by Gustafson–Kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process. IEEE Trans Neural Netw 22(12):1941–1951

    Article  Google Scholar 

  15. Juang CF, Hsieh CD (2012) A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization. IEEE Trans Fuzzy Syst 20(2):372–384

    Article  Google Scholar 

  16. Qiao JF, Zhou HB (2018) Modeling of energy consumption and effluent quality using density peaks-based adaptive fuzzy neural network. IEEE/CAA J Autom Sinica 5(5):968–976

    Article  MathSciNet  Google Scholar 

  17. Zhou HB, Qiao JF (2019) Soft-sensing of effluent ammonia nitrogen using rule automatic formation-based adaptive fuzzy neural network. Desalin Water Treat 140(2):132–142

    Article  Google Scholar 

  18. Ebadzadeh MM, Salimi-Badr A (2018) IC-FNN: a novel fuzzy neural network with interpretable, intuitive, and correlated-contours fuzzy rules for function approximation. IEEE Trans Fuzzy Syst 26(3):1288–1302

    Article  Google Scholar 

  19. Wu S, Er MJ (2000) Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans Syst Man Cybern, Part B (Cybernetics) 30(2):358–364

    Article  Google Scholar 

  20. Wu S, Er MJ, Gao Y (2001) A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans Fuzzy Syst 9(4):578–594

    Article  Google Scholar 

  21. Leng G, Prasad G, McGinnity TM (2004) An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Netw 17(10):1477–1493

    Article  MATH  Google Scholar 

  22. Wang N, Er MJ, Meng X (2009) A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing 72(16–18):3818–3829

    Article  Google Scholar 

  23. Jesús RJ (2009) SOFMLS: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309

    Article  Google Scholar 

  24. Wang N (2011) A generalized ellipsoidal basis function based online self-constructing fuzzy neural network. Neural Process Lett 34(1):13–37

    Article  Google Scholar 

  25. Zhou HB, Zhang Y, Duan WP, Zhao HY (2020) Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme. Appl Soft Comput 95(10):106516

    Article  Google Scholar 

  26. Han HG, Sun CX, Wu XL, Yang HY, Qiao JF (2022) Self-organizing interval type-2 fuzzy neural network using information aggregation method. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3136678

  27. Liu Y, Zhao J, Wang LQ, Wang W (2022) Unified modelling for multiple-energy coupling device of industrial integrated energy system IEEE Trans Indust Electron. https://doi.org/10.1109/TIE.2022.3152019

  28. Li W, Qiao J, Zeng XJ (2022) Online and self-learning approach to the identification of fuzzy neural networks. IEEE Trans Fuzzy Syst 30(3):649–662

    Article  Google Scholar 

  29. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks. IEEE, pp 1942–1948

  30. Khalilpourazari S, Doulabi HH, Çiftçioğlu AÖ, Weber GW (2021) Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic. Expert Syst Appl 177:114920

    Article  Google Scholar 

  31. Tirkolaee EB, Goli A, Mardani A (2021) A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems Annals Operations Res. https://doi.org/10.1007/s10479-021-04363-y

  32. Tirkolaee EB, Goli A, Weber GW (2020) Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783

    Article  Google Scholar 

  33. Tsekouras GE, Tsimikas J (2013) On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets Syst 221:65–89

    Article  MathSciNet  MATH  Google Scholar 

  34. Lai CM, Wu TH (2019) Simplified swarm optimization with initialization scheme for dynamic weapon–target assignment problem. Appl Soft Comput 82:105542

    Article  Google Scholar 

  35. Zhang S, Jiang H, Yin Y (2018) The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization. Sensors 18(2):625

    Article  Google Scholar 

  36. Si L, Wang Z, Liu Z (2016) Health condition evaluation for a shearer through the integration of a fuzzy neural network and improved particle swarm optimization algorithm. Appl Sci 6(6):171

    Article  Google Scholar 

  37. Pulido M, Melin P, Castillo O (2014) Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican stock exchange. Inf Sci 280:188–204

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuo RJ, Hung SY, Cheng WC (2014) Application of an optimization artificial immune network and particle swarm optimization-based fuzzy neural network to an RFID-based positioning system. Inf Sci 262:78–98

    Article  Google Scholar 

  39. Lin CJ, Chen CH, Lin CT (2009) A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Trans Syst, Man, Cybern Part C (Appl Rev) 39(1):55–68

    Article  Google Scholar 

  40. Cao B, Zhao JW, Liu X, Arabas J, Tanveer M, Singh A.K, Lv Z (2022) Multiobjective evolution of the explainable fuzzy rough neural network with gene expression programming IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3141761

  41. Han HG, Sun CX, Wu XL, Yang HY, Qiao JF (2022) Training fuzzy neural network via multi-objective optimization for nonlinear systems identification IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3119108

  42. Lin C, Liu Y, Lee C (2008) An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications. Int J Innov Computing Inf Control 4(7):1711–1722

    Google Scholar 

  43. Lin FJ, Teng LT, Lin JW (2009) Recurrent functional-link-based fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization. IEEE Trans Ind Electron 56(5):1557–1577

    Article  Google Scholar 

  44. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408

    Article  Google Scholar 

  45. Harrison KR, Engelbrecht AP, Ombuki-Berman BM (2018) Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell 12(3):187–226

    Article  Google Scholar 

  46. Tian D, Shi Z (2018) MPSO: modified particle swarm optimization and its applications. Swarm Evol Comput 41:49–68

    Article  Google Scholar 

  47. Wang F, Zhang H, Li K (2018) A hybrid particle swarm optimization algorithm using adaptive learning strategy. Inf Sci 436:162–177

    Article  MathSciNet  Google Scholar 

  48. Chen K, Zhou F, Liu A (2018) Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl-Based Syst 139:23–40

    Article  Google Scholar 

  49. Yu HB, Tan Y, Zeng JC, Sun CL, Jin YC (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454-455:59–72

    Article  MathSciNet  Google Scholar 

  50. Lee JH, Song JY, Kim DW, Kim JW, Kim YJ, Jung SY (2018) Particle swarm optimization algorithm with intelligent particle number control for optimal design of electric machines. IEEE Trans Ind Electron 65(2):1791–1798

    Article  Google Scholar 

  51. Leboucher C, Shin HS, Chelouah R (2018) An enhanced particle swarm optimization method integrated with evolutionary game theory. IEEE Trans Games 10(2):221–230

    Article  Google Scholar 

  52. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. Proc IEEE Congress Evol Comput 1:325–331

    Google Scholar 

  53. Sun J, Fang W, Wu XJ, Palade V, Xu WB (2012) Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol Comput 20(3):349–393

    Article  Google Scholar 

  54. Sun J, Fang W, Palade V, Wu XJ, Xu WB (2011) Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl Math Comput 218(7):3763–3775

    MATH  Google Scholar 

  55. Sun J, Wu XJ, Palade V, Fang W, Lai CH, Xu WB (2012) Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf Sci 193:81–103

    Article  MathSciNet  Google Scholar 

  56. Wang GG, Gandomi AH, Alavi AH, Deb S (2016) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput & Applic 27(4):989–1006

    Article  Google Scholar 

  57. Liu TY, Jiao LC, Ma WP, Ma JJ, Shang RH (2016) Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch. Appl Soft Comput 48:597–611

    Article  Google Scholar 

  58. Fang W, Sun J, Chen HH, Wu XJ (2016) A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population. Inf Sci 330:19–48

    Article  Google Scholar 

  59. Meng K, Wang HG, Dong ZY, Wong KP (2010) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222

    Article  Google Scholar 

  60. Zhang ZS (2010) Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Syst Appl 37(2):1800–1803

    Article  Google Scholar 

  61. Sun CF, Lu SF (2010) Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Syst Appl 37(6):4232–4241

    Article  Google Scholar 

  62. dos Santos Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683

    Article  Google Scholar 

  63. Haddar B, Khemakhem M, Hanafi S, Wilbaut C (2016) A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng Appl Artif Intell 55:1–13

    Article  Google Scholar 

  64. Soliman MM, Hassanien AE, Onsi HM (2016) An adaptive watermarking approach based on weighted quantum particle swarm optimization. Neural Comput & Applic 27(2):469–481

    Article  Google Scholar 

  65. Hu WB, Wang H, Qiu ZY, Nie C, Yan LP (2018) A quantum particle swarm optimization driven urban traffic light scheduling model. Neural Comput & Applic 29(3):901–911

    Article  Google Scholar 

  66. Yi J, Bai JR, Zhou W, He HB, Yao LH (2018) Operating parameters optimization for the aluminum electrolysis process using an improved quantum-behaved particle swarm algorithm. IEEE Trans Ind Inf 14(8):3405–3415

    Article  Google Scholar 

  67. Xia Y, Feng ZK, Niu WJ, Qin H, Jiang ZQ, Zhou JZ (2019) Simplex quantum-behaved particle swarm optimization algorithm with application to ecological operation of cascade hydropower reservoirs. Appl Soft Comput 84:105715

    Article  Google Scholar 

  68. Du B, Wei QC, Liu R (2019) An improved quantum-behaved particle swarm optimization for endmember extraction. IEEE Trans Geosci Remote Sens 57(8):6003–6017

    Article  Google Scholar 

  69. Chen Y, Wang DZ (2019) Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms. Trans Inst Meas Control 41(10):2886–2896

    Article  MathSciNet  Google Scholar 

  70. Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23

    Article  Google Scholar 

  71. Niu WJ, Feng ZK, Cheng CT, Zhou JZ (2018) Forecasting daily runoff by extreme learning machine based on quantum-behaved particle swarm optimization. J Hydrol Eng 23(3):04018002

    Article  Google Scholar 

  72. Ghorbani MA, Kazempour R, Chau KW, Shamshirband S, Ghazvinei PT (2018) Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, northern Iran. Eng Appl Comput Fluid Mech 12(1):724–737

    Google Scholar 

  73. Jin C, Jin SW (2015) Prediction approach of software fault-proneness based on hybrid artificial neural network and quantum particle swarm optimization. Appl Soft Comput 35:717–725

    Article  Google Scholar 

  74. Xu L, Qian F, Li YP, Li QM, Yang YW, Xu J (2016) Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing 173:1250–1256

    Article  Google Scholar 

  75. Yin F, Hao Y, Xiao T, Shao Y, Yuan M (2021) The prediction of pile foundation buried depth based on bp neural network optimized by quantum particle swarm optimization. Adv Civil Eng. https://doi.org/10.1155/2021/2015408

  76. Cheng CT, Niu WJ, Feng ZK, Shen JJ, Chau KW (2015) Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water 7(8):4232–4246

    Article  Google Scholar 

  77. Liu L, Liu D, Wu H, Wang X (2020) The prediction of metro shield construction cost based on a backpropagation neural network improved by quantum particle swarm optimization. Adv Civil Eng. https://doi.org/10.1155/2020/6692130

  78. Liu L, Sun J, Xu W, Du G, Chen J (2009) Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm. Biotechnol Prog 25(6):1819–1825

    Google Scholar 

  79. Liu PL, Leng WH, Fang W (2013) Training ANFIS model with an improved quantum-behaved particle swarm optimization algorithm. Math Probl Eng 2013:1–10. https://doi.org/10.1155/2013/595639

    Article  Google Scholar 

  80. Bagheri A, Peyhani HM, Akbari M (2014) Financial forecasting using ANFIS networks with quantum-behaved particle swarm optimization. Expert Syst Appl 41(14):6235–6250

    Article  Google Scholar 

  81. Zhang K, Hu Z, Gan XT, Fang JB (2016) A network traffic prediction model based on quantum-behaved particle swarm optimization algorithm and fuzzy wavelet neural network. Discret Dyn Nat Soc 2016:1–11. https://doi.org/10.1155/2016/4135056

    Article  MathSciNet  MATH  Google Scholar 

  82. Peng Y, Lei K, Yang X, Peng J (2020) Improved chaotic quantum-behaved particle swarm optimization algorithm for fuzzy neural network and its application. Math Probl Eng 2020:1–11. https://doi.org/10.1155/2020/9464593

    Article  Google Scholar 

  83. Feng HM (2006) Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70(1–3):241–251

    Article  Google Scholar 

  84. Han HG, Lu W, Hou Y (2016) An adaptive-PSO-based self-organizing RBF neural network. IEEE Trans Neural Netw Learn Syst 29(1):104–117

    Article  MathSciNet  Google Scholar 

  85. Li C, Zhou J, Fu B, Kou P, Xiao J (2011) T–S fuzzy model identification with a gravitational search-based hyperplane clustering algorithm. IEEE Trans Fuzzy Syst 20(2):305–317

    Article  Google Scholar 

  86. Juang CF, Huang RB, Lin YY (2009) A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans Fuzzy Syst 17(5):1092–1105

    Article  Google Scholar 

  87. EI-Nagar AM (2018) Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network–a novel structure. ISA Trans 72(1):205–217

    Article  Google Scholar 

  88. Zhao J, Lin CM (2019) Wavelet-TSK-type fuzzy cerebellar model neural network for uncertain nonlinear systems. IEEE Trans Fuzzy Syst 27(3):549–558

    Article  Google Scholar 

  89. Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808

    Article  Google Scholar 

  90. Lu X, Liu W, Zhou C, Huang M (2018) Robust least-squares support vector machine with minimization of mean and variance of modeling error. IEEE Trans Neural Netw Learn Syst 29(7):2909–2920

    MathSciNet  Google Scholar 

  91. Tüfekci P (2014) Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int J Electr Power Energy Syst 60:126–140

    Article  Google Scholar 

  92. Zhou HB, Qiao JF (2019) Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Appl Intell 49(3):1098–1126

    Article  Google Scholar 

  93. Wang GM, Jia QS, Zhou MC, Bi J (2021) Artificial neural networks for water quality soft-sensing in wastewater treatment: a review. Artif Intell Rev:1–23

  94. Wang Z, Chu JS, Song Y (2009) Influence of operating conditions on the efficiency of domestic wastewater treatment in membrane bioreactors. Desalination 245:73–81

    Article  Google Scholar 

  95. Chang FJ, Tsai YH, Chen PA (2015) Modeling water quality in an urban river using hydrological factors–data driven approaches. J Environ Manag 151(1–3):87–96

    Article  Google Scholar 

  96. Lee E, Han S, Kim H (2013) Development of software sensors for determining total phosphorus and total nitrogen in waters. Int J Environ Res Public Health 10(1):219–236

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Industry University Research Cooperation Project of Jiangsu Province under Grant BY2020247, the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant SJCX21_1509, and the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant 202111049233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbiao Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Deduction process of Eq. (51) using Mathematical induction:

When t = 1,

$$ {\displaystyle \begin{array}{c}{\vartheta}_1\left(\psi, {R}_{\varepsilon}\right)={p}^{(1)}={\varphi}_1\left(\psi \ast +\varepsilon \right)\\ {}\kern6.699996em =1-\left(1-{\varphi}_1\left(\psi \ast +\varepsilon \right)\right)\end{array}} $$
(A1)

That is, the equation holds.

When t = 2,

$$ {\displaystyle \begin{array}{c}{\vartheta}_1\left(\psi, {R}_{\varepsilon}\right)={p}^{(1)}+{p}^{(2)}\\ {}={\varphi}_1\left(\psi \ast +\varepsilon \right)+{\varphi}_2\left(\psi \ast +\varepsilon \right)\left(1-{\varphi}_1\left(\psi \ast +\varepsilon \right)\right)\\ {}={\varphi}_1\left(\psi \ast +\varepsilon \right)+{\varphi}_2\left(\psi \ast +\varepsilon \right)-{\varphi}_1\left(\psi \ast +\varepsilon \right){\varphi}_2\left(\psi \ast +\varepsilon \right)\\ {}=1-1+{\varphi}_1\left(\psi \ast +\varepsilon \right)+{\varphi}_2\left(\psi \ast +\varepsilon \right)-{\varphi}_1\left(\psi \ast +\varepsilon \right){\varphi}_2\left(\psi \ast +\varepsilon \right)\\ {}=1-\left(1-{\varphi}_1\left(\psi \ast +\varepsilon \right)\right)\Big(1-{\varphi}_1\left(\psi \ast +\varepsilon \right)\\ {}=1-\prod \limits_{i=1}^2\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]\end{array}} $$
(A2)

The equation also holds.

Assuming t = k, the equation holds, that is

$$ {\displaystyle \begin{array}{c}{\vartheta}_k\left(\psi, {R}_{\varepsilon}\right)={p}^{(1)}+{p}^{(2)}+\cdots +{p}^{(k)}\\ {}\kern4.399998em =1-\prod \limits_{i=1}^k\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]\end{array}} $$
(A3)

When t = k + 1,

$$ {\displaystyle \begin{array}{c}{\vartheta}_{k+1}\left(\psi, {R}_{\varepsilon}\right)={\vartheta}_k\left(\psi, {R}_{\varepsilon}\right)+{p}^{\left(k+1\right)}\\ {}=1-\prod \limits_{i=1}^k\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]+\\ {}{\varphi}_{k+1}\left(\psi \ast +\varepsilon \right)\prod \limits_{i=1}^k\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]\\ {}=1-\left(1-{\varphi}_{k+1}\left(\psi \ast +\varepsilon \right)\right)\prod \limits_{i=1}^k\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]\\ {}=1-\prod \limits_{i=1}^{k+1}\left[1-{\varphi}_i\left(\psi \ast +\varepsilon \right)\right]\end{array}} $$
(A4)

Therefore, the equation holds for any t ≥ 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, Y., Xu, H. et al. A self-organizing fuzzy neural network modeling approach using an adaptive quantum particle swarm optimization. Appl Intell 53, 13569–13592 (2023). https://doi.org/10.1007/s10489-022-04133-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04133-8

Keywords

Navigation