Skip to main content
Log in

Adaptive neural output feedback control of automobile PEM fuel cell air-supply system with prescribed performance

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Oxygen excess ratio (OER) is a key specification of fuel cells, which influences the net power and health state. To reconstitute the unmeasurable variable and achieve precise tracking accuracy, the observer-based adaptive neural network control using a prescribed performance function is proposed for the polymer electrolyte membrane (PEM) fuel cell air-supply system. Firstly, an observer is designed to recover the unmeasurable variable based on the transformed canonical system. Secondly, a finite-time prescribed performance function is constructed to guarantee the maximal overshoot and steady-state tracking error within the quantitative boundary. The contribution of the proposed control scheme can be concluded that: 1) the different errors are simultaneously used to update the neural network weights for the improvement of the observer performance; 2) the restriction that the initial error is required to be within the performance function bound is relaxed by proposing a tuning function and 3) the convergence time and residual set of OER tracking error can be determined qualitatively. The signals included in the air-supply system are proved to be uniformly ultimately bounded. Different numerical simulations and hardware-in-loop (HIL) experiments show that the more accurate estimation is provided by the proposed observer. Meanwhile, the tracking errors are restricted within the predefined bounds. From the experimental results, the proposed observer and controller show the best performance indexes including the root mean square error (RMSE), the mean absolute error (MAE) and the standard deviation (SD) in different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Daud W, Rosli R, Majlan E, et al. (2017) PEM fuel cell system control: a review. Renew Energy 113:620–638

    Google Scholar 

  2. Hou J, Yang M, Ke C, et al. (2020) Control logics and strategies for air supply in PEM fuel cell engines. Appl Energy 269:115059

    Google Scholar 

  3. Tirnovan R, Giurgea S (2012) Efficiency improvement of a PEMFC power source by optimization of the air management. Int J Hydrog Energy 37(9):7745–7756

    Google Scholar 

  4. Pukrushpan J T, Stefanopoulou A G, Peng H (2004) Control of fuel cell breathing. IEEE Control Syst Mag 24(2):30–46

    MathSciNet  MATH  Google Scholar 

  5. Pukrushpan J T (2004) Control of fuel cell power systems: principles, modeling, analysis, and feedback design. Springer, London

    Google Scholar 

  6. Niknezhadi A, Allué-Fantova M, Kunusch C, et al. (2011) Design and implementation of LQR/LQG strategies for oxygen stoichiometry control in PEM fuel cells based systems. J Power Sources 196 (9):4277–4282

    Google Scholar 

  7. Suh K W (2006) Modeling, analysis and control of fuel cell hybrid power systems. Ph.D. Thesis, University of Michigan, Ann Arbor

  8. Arce A, Real A, Bordons C, et al. (2010) Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans Ind Electron 57(6):1892–1905

    Google Scholar 

  9. Gruber J K, Bordons C, Oliva A (2012) Nonlinear MPC for the airflow in a PEM fuel cell using a volterra series model. Control Eng Practice 20(2):205–217

    Google Scholar 

  10. Wang Y X, Kim Y B (2014) Real-time control for air excess ratio of a PEM fuel cell system. IEEE/ASME Trans Mechatron 19(3):852–861

    Google Scholar 

  11. Matraji I, Laghrouche S, Jemei S, et al. (2013) Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104:945–957

    Google Scholar 

  12. Kunusch C, Puleston P F, Mayosky M A, Riera J (2009) Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans Control Syst Technol 17(1):167–174

    Google Scholar 

  13. Zhao D, Gao F, Bouquain D, et al. (2014) Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications. IEEE Trans Veh Technol 63 (1):51–61

    Google Scholar 

  14. Talj R J, Hissel D, Ortega R, et al. (2010) Experimental validation of a PEM fuel cell reduced order model and a moto-compressor higher order sliding mode control. IEEE Trans Ind Electron 57(6):1906–1913

    Google Scholar 

  15. Laghrouche S, Harmouche M, Ahmed F S, et al. (2015) Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control. IEEE Trans Control Syst Technol 23(4):1594–1601

    Google Scholar 

  16. Yang S, Gao T, Wang J, et al. (2021) Efficient spike-driven learning with dendritic event-based processing. Front Neurosci 15:601109

    Google Scholar 

  17. Yang S, Wang J, Deng B, et al. (2021) Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3084250https://doi.org/10.1109/TNNLS.2021.3084250

  18. Yang S, Wang J, Deng B, et al. (2019) Real-time neuro-morphic system for large-scale conductance-based spiking neural networks. IEEE Trans Cybern 49(7):2490–2503

    Google Scholar 

  19. Yang S, Deng B, Wang J, et al. (2020) Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Trans Neural Networks Learn Syst 31(1):148–162

    Google Scholar 

  20. Yang S, Wang J, Zhang N, et al. (2021) Cerebellumorphic: large-scale neuromorphic model and architecture for supervised motor learning. IEEE Trans Neural Networks Learn Syst. https://doi.org/10.1109/TNNLS.2021.3057070https://doi.org/10.1109/TNNLS.2021.3057070

  21. Abbaspour A, Khalilnejad A, Chen Z (2016) Robust adaptive neural network control for PEM fuel cell. Int J Hydrog Energy 41(44):20385–20395

    Google Scholar 

  22. Abbaspour A, Yen K K, Forouzannezhad P, et al. (2020) An adaptive resilient control approach for pressure control in proton exchange membrane fuel cells. IEEE Trans Ind Appl 55(6):6344–6354

    Google Scholar 

  23. Fang X, Liu F, Gao X (2021) Composite learning control of overactuated manned submersible vehicle with disturbance/uncertainty and measurement noise. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3053292

  24. Yang G, Wang H (2021) Multilayer neural network based asymptotic motion control of saturated uncertain robotic manipulators. Appl Intell. https://doi.org/10.1007/s10489-021-02318-1

  25. Bencherif A, Chouireb F, et al. (2019) A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking. Appl Intell 49:3881–3893

    Google Scholar 

  26. Huang D, Yang C, Pan Y, et al. (2021) Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans Ind Inform 17(1):209–218

    Google Scholar 

  27. Wang Y, Wang Y, Zhang H (2019) Robust adaptive control of PEMFC air supply system based on RBF neural network. J Dyn Syst Meas Control Trans ASME 141(6):064503

    Google Scholar 

  28. Zhang H, Wang Y, Wang D, et al. (2020) Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system. Inf Sci 511:1–17

    MathSciNet  MATH  Google Scholar 

  29. Wang Y, Wang Y, Wang D, et al. (2020) Observer-based composite adaptive type-2 fuzzy control for PEMFC air supply systems. IEEE Trans Fuzzy Syst 30(2):515–529

    Google Scholar 

  30. Bechlioulis C P, Rovithakis G A (2008) Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control 53(9):2090–2099

    MathSciNet  MATH  Google Scholar 

  31. Bechlioulis C P, Rovithakis G A (2009) Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2):532–538

    MathSciNet  MATH  Google Scholar 

  32. Shao S, Chen M (2021) Adaptive neural discrete-time fractional-order control for a UAV system with prescribed performance using disturbance observer. IEEE Trans Syst Man Cybern Syst 51(2):742–754

    Google Scholar 

  33. Phu D X, Huy T D, Mien V, Choi S B (2018) A new composite adaptive controller featuring the neural network and prescribed sliding surface with application to vibration control. Mech Syst Signal Process 107:409–428

    Google Scholar 

  34. Huang Y, Na J, Wu X, et al. (2015) Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans. 54:145–155

    Google Scholar 

  35. Wang S, Na J, Chen Q (2021) Adaptive predefined performance sliding mode control of motor driving systems with disturbances. IEEE Trans Energy Convers 36(3):1931–1939

    Google Scholar 

  36. Liu Y, Liu X, Jing Y (2018) Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Inf Sci 468:29–46

    MathSciNet  MATH  Google Scholar 

  37. Wang Y, Wang Y, Chen G (2020) Robust composite adaptive neural network control for air management system of PEM fuel cell based on high-gain observer. Neural Comput Appl 32(14):10229–10243

    Google Scholar 

  38. Du J, Hu X, Liu H, et al. (2015) Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer. IEEE Trans Neural Netw Learn Syst 26(11):2775–2786

    MathSciNet  Google Scholar 

  39. Peng Z, Dan W, Liu H, Sun G, Wang H (2013) Distributed robust state and output feedback controller designs for rendezvous of networked autonomous surface vehicles using neural networks. Neurocomputing 115(4):130–141

    Google Scholar 

  40. Zhu G, Ma Y, Li Z, et al. (2021) Adaptive neural output feedback control for MSVs with predefined performance. IEEE Trans Veh Technol 70(4):2994–3006

    Google Scholar 

  41. Xu B, Shi Z, Yang C (2014) Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Cybern 44(12):2626–2634

    Google Scholar 

  42. Sun T, Peng L, Cheng L, et al. (2020) Composite learning enhanced robot impedance control. IEEE Trans Neural Netw Learn Syst 31(3):1052–1059

    MathSciNet  Google Scholar 

  43. Talj R J, Ortega R, Hilairet M (2009) A controller tuning methodology for the air supply system of a PEM fuel-cell system with guaranteed stability properties. Int J Hydrog Energy 82(9):1706–1719

    MathSciNet  MATH  Google Scholar 

  44. Li Y, Yang G (2018) Event-based adaptive NN tracking control of nonlinear discrete-time systems. IEEE Trans Neural Netw Learn Syst 29(9):4359–4369

    Google Scholar 

  45. Xu B, Sun F (2018) Composite intelligent learning control of strict-feedback systems with disturbance. IEEE Trans Cybern 48(2):730–741

    Google Scholar 

  46. Pedram A, Mahdi AS, Ali KS (2017) Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification. Eng Appl Artif Intell 65:1–11

    Google Scholar 

  47. Kumar R, Srivastava S, Gupta JRP, et al. (2019) Temporally local recurrent radial basis function network for modeling and adaptive control of nonlinear systems. ISA Trans 87:88–115

    Google Scholar 

  48. Kumar R, Srivastava S, Gupta JRP (2017) Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion. ISA Trans 67:407–427

    Google Scholar 

  49. Jiang T, Huang J, Li B (2020) Composite adaptive finite-time control for quadrotors via prescribed performance. J Frankl Inst Eng Appl Math 357(10):5878–5901

    MathSciNet  MATH  Google Scholar 

  50. Ge S S (2001) Stable adaptive neural network control. Kluwer Academic, Norwell, USA

    Google Scholar 

  51. Polycarpou M M, Ioannou P A (1996) A robust adaptive nonlinear control design. Automatica 32(3):423–427

    MathSciNet  MATH  Google Scholar 

  52. Kumar R, Srivastava S, Gupta JRP (2017) Lyapunov stability-based control and identification of nonlinear dynamical systems using adaptive dynamic programming. Soft Comput 21:4465–4480

    MATH  Google Scholar 

Download references

Acknowledgments

This work was only supported by the Natural Science Foundation of Ningxia Hui Autonomous Region under Grant 2022AAC03338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Wang.

Ethics declarations

Conflict of interest statement

We declared that no conflicts of interest exist in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The proof of smoothness of function ς(t) is explained as follows:

1) When 0 < t < Tf or tTf, it is obvious that ς(t) is continuous. Meanwhile, because of \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {\varsigma }(t)=\underset {t\to T_{f}^{+}}{\mathop {\lim }} {\varsigma }(t)={\varsigma }_{T_{f}}\), the function ς(t) is continuous when t > 0.

2) When tTf, the derived function ς(n)(t) = 0, n ≥ 1 is continuous and it is viewed that \(\underset {t\to T_{f}^{+}}{\mathop {\lim }} {\varsigma }^{(n)}(t)=0\).

3) When 0 < t < Tf, the smoothness of function ς(t) can be proven step by step.

Step 1. The first-order derivative of ς(t) is given as:

$$ \begin{array}{@{}rcl@{}} \frac{{\partial{\varsigma}(t)}}{\partial t}\!\!\!&&=\frac{\partial \ell e^{\hbar(1-\frac{T_{f}}{T_{f}-t})}}{\partial t}{\varUpsilon}(t)+\frac{\partial {\varUpsilon}(t)}{\partial t}\ell e^{\hbar (1-\frac{T_{f}}{T_{f}-t})}\\ &&=\ell \frac{dq(t)}{dt}e^{q(t)}{\varUpsilon}(t)+\ell\frac{d{\varUpsilon}(t)}{dt}e^{q(t)} \end{array} $$
(70)

where \(q(t)=\frac {\hbar t}{t-T_{f}}\). It follows from (70), one can obtain that \(\frac {dq(t)}{dt}=-\frac {\hbar T_{f}}{(t-T_{f})^{2}}\), \(\frac {d{\varUpsilon }(t)}{dt}=-\frac {\pi }{2T_{f}}\sin \limits (\frac {\pi t}{T_{f}})\), \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} e^{q(t)}=0\), \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {\varUpsilon }(t)=0\). Thus, \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} \frac {d{\varUpsilon }(t)}{dt}e^{q(t)}=0\). Based on the L’Hospital’ rule, the following one can be obtained through the double derivations of numerator and denominator:

$$ \begin{array}{@{}rcl@{}} &\underset{t\to T_{f}^{-}}{\mathop{\lim}} \frac{dq(t)}{dt}e^{q(t)}=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{\frac{\hbar T_{f}}{(T_{f}-t)^{2}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{\frac{2}{T_{f}-t}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{2e^{\frac{\hbar t}{t-T_{f}}}}{\hbar T_{f}}\right]=0 \end{array} $$
(71)

Based on the above results, one can get \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {\varsigma }^{(1)}(t)=\underset {t\to T_{f}^{+}}{\mathop {\lim }} {\varsigma }^{(1)}(t)=0\) and it proves that ς(1)(t) is continuous.

Step 2. The second-order derivative of ς(t) is given:

$$ \begin{array}{@{}rcl@{}} \frac{{\partial^{2}{\varsigma}(t)}}{\partial t^{2}}\!\!\!&&=\ell\frac{d^{2}{\varUpsilon}(t)}{dt^{2}}e^{q(t)}+2\ell\frac{dq(t)}{dt}\frac{d{\varUpsilon}(t)}{dt}e^{q(t)}+\\ &&~~~~\ell\frac{\partial^{2} e^{q(t)}}{\partial t^{2}}{\varUpsilon}(t)\\ &&=\ell\frac{d^{2}{\varUpsilon}(t)}{dt^{2}}e^{q(t)}+2\ell\frac{dq(t)}{dt}\frac{d{\varUpsilon}(t)}{dt}e^{q(t)}+\\ &&~~~~\ell{\varUpsilon}(t)\frac{d^{2}q(t)}{dt^{2}}e^{q(t)}+\ell{\varUpsilon}(t)\left( \frac{dq(t)}{dt}\right)^{2}e^{q(t)} \end{array} $$
(72)

It follows from (72) that \(\frac {d^{2}{\varUpsilon }(t)}{dt^{2}}=-\frac {\pi ^{2}}{2{T_{f}^{2}}}\cos \limits (\frac {\pi t}{T_{f}})\), \(\frac {d^{2}q(t)}{dt^{2}}=\frac {2\hbar T_{f}}{(t-T_{f})^{3}}\). Furthermore, \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} \ell \frac {d^{2}{\varUpsilon }(t)}{dt^{2}}e^{q(t)}=0\) and \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} 2\ell \frac {dq(t)}{dt}\frac {d{\varUpsilon }(t)}{dt}e^{q(t)}=0\).

Similarly, use the L’Hospital’ rule and one can get:

$$ \begin{array}{@{}rcl@{}} &&\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{d^{2}q(t)}{dt^{2}}e^{q(t)}=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left[-\frac{\frac{2\hbar T_{f}}{(T_{f}-t)^{3}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{\frac{6}{(T_{f}-t)^{2}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{\frac{12}{T_{f}-t}}{\hbar T_{f}e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}} \left[-\frac{12e^{\frac{\hbar t}{t-T_{f}}}}{(\hbar T_{f})^{2}}\right]=0 \end{array} $$
(73)

and

$$ \begin{array}{@{}rcl@{}} &&\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left( \frac{dq(t)}{dt}\right)^{2}e^{q(t)}=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left[\frac{\frac{(\hbar T_{f})^{2}}{(t-T_{f})^{4}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left[\frac{\frac{4\hbar T_{f}}{(T_{f}-t)^{3}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=0 \end{array} $$
(74)

Therefore, one has \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {\varsigma }^{(2)}(t)=\underset {t\to T_{f}^{+}}{\mathop {\lim }} {\varsigma }^{(2)}(t)=0\) and it proves that ς(2)(t) is continuous.

Step n. The n th-order (n ≥ 3) derivative of ς(t) is given as:

$$ \begin{array}{@{}rcl@{}} \frac{{\partial^{n}{\varsigma}(t)}}{\partial t^{n}}&={C_{n}^{0}}\ell\frac{d^{n}{\varUpsilon}(t)}{dt^{n}}e^{q(t)}+\ell\sum\limits_{i=1}^{n}{C_{n}^{i}}\frac{d^{n-i}{\varUpsilon}(t)}{dt^{n-i}}\frac{\partial^{i}e^{q(t)}}{\partial t^{i}} \end{array} $$
(75)

where \(\frac {d^{n}{\varUpsilon }(t)}{dt^{n}}=\frac {1}{2}\left (\frac {\pi }{T_{f}}\right )^{n}\cos \limits \left (\frac {\pi t}{T_{f}}+\frac {n\pi }{2}\right )\) is a bounded value. Thus, one can obtain \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {C_{n}^{0}}\ell \frac {d^{n}{\varUpsilon }(t)}{dt^{n}}e^{q(t)}=0\). The term \(\ell \sum \limits _{i=1}^{n}{C_{n}^{i}}\frac {d^{n-i}{\varUpsilon }(t)}{dt^{n-i}}\frac {d^{i}e^{q(t)}}{dt^{i}}\) includes the polynomials of \(\frac {d^{i}q(t)}{dt^{i}}=(-1)^{i}\prod \limits _{j=1}^{i}(j)\frac {\hbar T_{f}}{(t-T_{f})^{i+1}}\) and \(\left (\frac {dq(t)}{dt}\right )^{i}=\frac {(-\hbar T_{f})^{i}}{(t-T_{f})^{2i}}\).

As a result, \(\frac {\partial ^{n}{\varsigma }(t)}{\partial t^{n}}\) can be expressed as polynomials of eq(t) and \(\frac {\zeta _{i}}{(T_{f}-t)^{r}}e^{q(t)}\) where ζi is a bounded constant and r ≥ 2. Therefore, use the L’Hospital’ rule successively:

$$ \begin{array}{@{}rcl@{}} &&\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left[\frac{\zeta_{i}}{(T_{f}-t)^{r}}e^{q(t)}\right]=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\left[\frac{\frac{\zeta_{i}}{(T_{f}-t)^{r}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{\zeta_{i}r}{\hbar T_{f}}\left[\frac{\frac{1}{(T_{f}-t)^{(r-1)}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{\zeta_{i}r(r-1)}{(\hbar T_{f})^{2}}\left[\frac{\frac{1}{(T_{f}-t)^{(r-2)}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{\zeta_{i}r(r-1)(r-2)}{(\hbar T_{f})^{3}}\left[\frac{\frac{1}{(T_{f}-t)^{(r-3)}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]=...\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{\zeta_{i}\prod\limits_{j=0}^{r-1}(r-j)}{(\hbar T_{f})^{(r-1)}}\left[\frac{\frac{1}{(T_{f}-t)^{}}}{e^{\frac{\hbar t}{T_{f}-t}}}\right]\\ &&=\underset{t\to T_{f}^{-}}{\mathop{\lim}}\frac{\zeta_{i}\prod\limits_{j=0}^{r-1}(r-j)}{(\hbar T_{f})^{r}}e^{q(t)}\\ &&=0 \end{array} $$
(76)

Thus, one can obtain \(\underset {t\to T_{f}^{-}}{\mathop {\lim }} {\varsigma }^{(n)}(t)=\underset {t\to T_{f}^{+}}{\mathop {\lim }} {\varsigma }^{(n)}(t)=0\) and it proves that ς(n)(t) is continuous and ς(t) is n th-order differentiable. As a result, the proof of smoothness of ς(t) is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y. & Wang, Y. Adaptive neural output feedback control of automobile PEM fuel cell air-supply system with prescribed performance. Appl Intell 53, 8712–8734 (2023). https://doi.org/10.1007/s10489-022-03765-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03765-0

Keywords

Navigation