Skip to main content
Log in

A new collaborate neuro-dynamic framework for solving convex second order cone programming problems with an application in multi-fingered robotic hands

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A neural network model is constructed on the basis of the duality theory, optimization theory, convex analysis theory and Lyapunov stability theory to solve convex second-order cone programming (CSOCP) problems. According to Karush-Kuhn-Tucker conditions of convex optimization, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the CSOCP problem. By employing Lyapunov function approach, it is also shown that the presented neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original optimization problem. Simulation results show that the neural network is feasible and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Faraut J, Kornyi A (1994) Analysis on symmetric cones. In: Oxford mathematical monographs. Oxford University Press, New York

  2. Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program 95:3–51

    Article  MathSciNet  MATH  Google Scholar 

  3. Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Application of second-order cone programming. Linear Algebra Appl 284:193–228

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen ED, Roos C, Terlaky T (2003) On implementing a primal–dual interior-point method for conic quadratic optimization. Math Program 95:249–277

    Article  MathSciNet  MATH  Google Scholar 

  5. Monteiro RDC, Tsuchiya T (2000) Polynomial convergence of primal–dual algorithms for the second-order cone programs based on the MZ-family of directions. Math Program 88:61–83

    Article  MathSciNet  MATH  Google Scholar 

  6. Tsuchiya T (1999) A convergence analysis of the scaling-invariant primal–dual path-following algorithms for second-order cone programming. Optim Methods Softw 11:141–182

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen X-D, Sun D, Sun J (2003) Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput Optim Appl 25:39–56

    Article  MathSciNet  MATH  Google Scholar 

  8. Fukushima M, Luo Z-Q, Tseng P (2002) Smoothing functions for second-order cone complementarity problems. SIAM J Optim 12:436–460

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim 15:593– 615

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanzow C, Ferenczi I, Fukushima M (2009) On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J Optim 20:297–320

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen J. -S., Tseng P (2005) An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math Program 104:293–327

    Article  MathSciNet  MATH  Google Scholar 

  12. Pana S, Chenb J-S (2010) Interior proximal methods and central paths for convex second-order cone programming. Nonlinear Anal 73:3083–3100

    Article  MathSciNet  Google Scholar 

  13. Boyd SP, Wegbreit B (2007) A fast computation of optimal contact forces. IEEE Trans Robot 23 (6):1117–1132

    Article  Google Scholar 

  14. Boyd S, Crusius C, Hansson A (1998) Control applications of nonlinear convex programming. J Control Process 8(5):313–324

    Article  Google Scholar 

  15. Bertsimas D, Brown DB (2007) Constrained stochastic LQC: atractableapproach. IEEE Trans Autom Control 52(10):1826–1841

    Article  MATH  Google Scholar 

  16. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming- theory and algorithms, 2nd. Wiley, New York

    MATH  Google Scholar 

  17. Tank DW, Hopfield JJ (1986) Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming pircuit. IEEE Trans Circuits Syst 33:533–541

    Article  Google Scholar 

  18. Kennedy MP, Chua LO (1988) Neural networks for nonlinear programming. IEEE Trans Circuits Syst 35:554–562

    Article  MathSciNet  Google Scholar 

  19. Chen KZ, Leung Y, Leung KS, Gao XB (2002) A neural network for nonlinear programming problems. Neural Comput Applic 11:103–111

    Article  Google Scholar 

  20. Effati S, Nazemi AR (2006) Neural network models and its application for solving linear and quadratic programming problems. Appl Math Comput 172:305–331

    MathSciNet  MATH  Google Scholar 

  21. Effati S, Ghomashi A, Nazemi AR (2007) Application of projection neural network in solving convex programming problems. Appl Math Comput 188:1103–1114

    MathSciNet  MATH  Google Scholar 

  22. Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans Circuits Syst I 51:1741–1754

    Article  MathSciNet  MATH  Google Scholar 

  23. Lillo WE, Loh MH, Hui S, Zăk SH (1993) On solving constrained optimization problems with neural networks: a penalty method approach. IEEE Trans Neural Netw 4:931–939

    Article  Google Scholar 

  24. Malek A, Hosseinipour-Mahani N, Ezazipour S (2010) Efficient recurrent neural network model for the solution of general nonlinear optimization problems. Optim Methods Softw 25:1–18

    Article  MathSciNet  MATH  Google Scholar 

  25. Nazemi AR (2012) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17:1696–1705

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazemi AR (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intel 26:685–696

    Article  Google Scholar 

  27. Nazemi AR, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66:212–221

    Article  Google Scholar 

  28. Nazemi AR, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn Comput 6(3):484–495

    Article  MathSciNet  Google Scholar 

  29. Xia Y, Wang J (2005) A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans Neural Netw 16:379–386

    Article  Google Scholar 

  30. Xue X, Bian W (2007) A project neural network for solving degenerate convex quadratic program. Neural Netw 70:2449–2459

    Google Scholar 

  31. Xue X, Bian W (2008) Subgradient-based neural network for nonsmooth convex optimization problems. IEEE Trans Circuits Syst I 55:2378–2391

    Article  MathSciNet  Google Scholar 

  32. Yanga Y, Cao J (2010) The optimization technique for solving a class of non-differentiable programming based on neural network method. Nonlinear Anal 11:1108–1114

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang Y, Xu X (2007) The projection neural network for solving convex nonlinear programming. In: Huang D-S, Heutte L, Loog M (eds) ICIC 2007, LNAI 4682. Springer, Berlin, pp 174–181

  34. Yang Y, Cao J (2008) A feedback neural network for solving convex constraint optimization problems. Appl Math Comput 201:340–350

    MathSciNet  MATH  Google Scholar 

  35. Mu X, Liu S, Zhang Y (2005) A neural network algorithm for second-order conic programming. In: Proceedings of the 2nd international symposiumon neural networks, Chongqing, China, Part II, pp 718–724

  36. Xia Y, Wang J, Fok LM (2004) Grasping-force optimization formultifingered robotic hands using a recurrent neural network. IEEE Trans Robot Autom 20(3):549–554

    Article  Google Scholar 

  37. Ko C-H, Chen J-S, Yang C-Y (2011) Recurrent neural networks for solving second-order cone programs. Neurocomputing 74:3646–3653

    Article  Google Scholar 

  38. Sun J, Zhang L (2009) A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems. Comput Math Appl 58:1936–1946

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun J, Chen J-S, Ko C-H (2012) Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl 51:623–648

    Article  MathSciNet  MATH  Google Scholar 

  40. Miao X, Chen J-S, Ko C-H (2014) A smoothed NR neural network for solving nonlinear convex programs with second-order cone constraints. Inf Sci 268:255–270

    Article  MathSciNet  MATH  Google Scholar 

  41. Miao X, Chen J-S, Ko C-H (2016) Neural network based on the generalized FB function for nonlinear convex programs with second-order cone constraints. Neurocomputing 203:62–72

    Article  Google Scholar 

  42. Zhang Y (2017) A projected-based neural network method for second-order cone programming. International Journal of Machine Learning and Cybernetics 8(6):1907–1914

    Article  Google Scholar 

  43. Liao LZ, Qi HD (1999) A neural network for the linear complementarity problem. Math Comput Model 29(3):9–18

    Article  MathSciNet  MATH  Google Scholar 

  44. Benson H. Y., Vanderbei RJ (2003) Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math Program Ser B 95:279–302

    Article  MathSciNet  MATH  Google Scholar 

  45. Miller RK, Michel AN (1982) Ordinary differential equations. Academic Press, NewYork

    MATH  Google Scholar 

  46. Yang Y, Cao J, Xua X, Hua M, Gao Y (2014) A new neural network for solving quadratic programming problemswith equality and inequality constraints. Math Comput Simul 101:103–112

    Article  Google Scholar 

  47. Nazemi AR (2017) A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Processing Letters 47(1):167–192

    Article  Google Scholar 

Download references

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nazemi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemi, A. A new collaborate neuro-dynamic framework for solving convex second order cone programming problems with an application in multi-fingered robotic hands. Appl Intell 49, 3512–3523 (2019). https://doi.org/10.1007/s10489-019-01462-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01462-z

Keywords

Navigation