Skip to main content
Log in

Basic Concepts of Quantale-Enriched Topologies

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The categorical framework for our axioms of quantale-enriched topologies is the theory of modules in the monoidal category \(\textsf {Sup}\) and its free right modules generated by power sets. To express the intersection axiom we introduce the structure of a quasi-magma on a quantale. By selecting appropriate quantales and their corresponding quasi-magmas, we show that some well-established mathematical structures become quantale-enriched topologies. These include, among others, the closed left ideal lattices of non-commutative \(C^*\)algebras, lower regular function frames of approach spaces as well as quantale-valued topological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we have used the fact that the forgetful functor \(\textsf {Mod}_r(\mathfrak {Q})\xrightarrow {\,\,\,} \textsf {Sup}\) has a left adjoint functor (see [24, p. 174]).

  2. Since directed subsets are nonempty, note that the bottom element is not necessarily a zero element of \(\diamond \).

  3. For the definition of the Kleisli category associated with a monad (resp. algebraic theory) we refer to [25].

  4. We recall that a quantale homomorphism is not necessarily unital.

  5. Here \(\beta \) refers to the lax distributive law of the ultrafilter monad over the \(\mathfrak {Q}\)-powerset monad (cf. [20, Prop. 3.1]).

References

  1. Appert A., Fan K., Espaces Topologiques Intermédiaires. Problème de la distanciation. In: Actualités Sci. Ind., vol. 1121, Hermann & Cie, Paris (1951)

  2. Borceux, F.: Handbook of Categorical Algebra: Categories and Structures, vol. 2. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  3. Clementino, M.M., Hofmann, D.: Topological features of lax algebras. Appl. Categ. Struct. 11, 267–286 (2003)

    Article  MathSciNet  Google Scholar 

  4. Clementino, M.M., Tholen, W.: Metric, topology and multicategory—a common approach. J. Pure Appl. Algebra 179, 13–47 (2003)

    Article  MathSciNet  Google Scholar 

  5. Eklund, P., Gutiérrez García, J., Höhle, U., Kortelainen, J.: Semigroups in Complete Lattices: Quantales, Modules and Related Topics, Developments in Mathematics, vol. 54. Springer International Publishing, Cham (2018)

  6. Gähler, W.: Monadic Topologies – A New Concept of Generalized Topology. Recent Developments of General Topology and Its Applications, pp. 136–149. Akademie-Verlag, Berlin (1992)

  7. Goguen, J.A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43, 734–742 (1973)

    Article  MathSciNet  Google Scholar 

  8. Gutiérrez García, J., Höhle, U.: Enriched topologies and topological representation of semi-unital and semi-integral quantales. Topol. Appl. 273, 106967 (2020)

  9. Gutiérrez García, J., Höhle, U., Kubiak, T.: Tensor products of complete lattices and their application in constructing quantales. Fuzzy Sets Syst. 313, 43–60 (2017)

  10. Heckmann, R., Huth, M.: A duality theory for quantitative semantics. Lecture Notes Comput. Sci. 1414, 255–274 (1998)

    Article  MathSciNet  Google Scholar 

  11. Höhle, U.: Probabilistic topologies induced by \(L\)-fuzzy uniformities. Manuscripta Math. 38, 289–323 (1982)

    Article  MathSciNet  Google Scholar 

  12. Höhle, U.: Many Valued Topology and Its Applications. Kluwer, Boston (2001)

    Book  Google Scholar 

  13. Höhle, U.: Categorical foundations of topology with applications to quantaloid enriched topological spaces. Fuzzy Sets Syst. 256, 166–210 (2014)

    Article  MathSciNet  Google Scholar 

  14. Höhle, U.: Topological representation of right-sided and idempotent quantales. Semigroup Forum 90, 648–659 (2015)

    Article  MathSciNet  Google Scholar 

  15. Höhle, U., Kubiak, T.: Many valued topologies and lower semicontinuity. Semigroup Forum 75(1), 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  16. Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck. Mem. Am. Math. Soc. 51, 309 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, Advanced Theory, Graduate Studies in Mathematics, vol. 16. American Mathematical Society, Providence (1997)

  18. Kelly, G.M.: Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  19. Kowalsky, H.J.: Beiträge zur topologischen Algebra. Math. Nachr. 11, 143–185 (1954)

    Article  MathSciNet  Google Scholar 

  20. Lai, H., Tholen, W.: Quantale-valued topological spaces via closure and convergence. Topol. Appl. 230, 599–620 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rend. Sem. Mat. Fis. Milano 43, 134–166 (1973)

    Article  MathSciNet  Google Scholar 

  22. Lowen, R.: Topologies floues. C. R. Acad. Sci. Paris Sér. A 278, 925–928 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Lowen, R.: Index Analysis. Approach Spaces at Work. Springer, London (2015)

    Book  Google Scholar 

  24. Mac Lane S., Categories for the Working Mathematician, Graduate Texts in Mathematics vol. 5, 2nd. edn., Springer, Berlin (1998)

  25. Manes, E.G.: Algebraic Theories, Graduate Texts in Mathematics, vol. 26. Springer, Berlin (1976)

    Google Scholar 

  26. Stubbe, I.: Categorical structures enriched in a quantaloid: categories, distributors and functors. Theor. Appl. Categ. 14, 1–45 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Stubbe, I.: Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theor. Appl. Categ. 16, 283–306 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Sierpiński, W., Introduction to General Topology, Toronto (1934) (Translation of the Polish edition 1928)

  29. Thornton, M.C.: Topological spaces and lattices of lower semicontinuous functions. Trans. Am. Math. Soc. 181, 495–506 (1973)

    Article  MathSciNet  Google Scholar 

  30. Weiss, M.D.: Fixed points, separation, and induced topologies for fuzzy sets. J. Math. Anal. Appl. 50, 142–150 (1975)

    Article  MathSciNet  Google Scholar 

  31. Yao, W., Wu, H.: Dualities for lower semicontinuous maps in the framework of interior spaces. Houston J. Math. 43, 975–991 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for constructive comments and suggestions leading to an essential improvement of our paper. As one example among others we mention the referee’s encouragement to give a more categorical framework of enriched quasi-magmas being now Sect. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Gutiérrez García.

Additional information

Communicated by Jiří Rosický

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JGG acknowledges support from the Basque Government (Grant IT974-16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez García, J., Höhle, U. & Kubiak, T. Basic Concepts of Quantale-Enriched Topologies. Appl Categor Struct 29, 983–1003 (2021). https://doi.org/10.1007/s10485-021-09639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-021-09639-9

Keywords

Navigation