Skip to main content
Log in

Axioms for Sequential Convergence

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

It is of general knowledge that those (ultra)filter convergence relations coming from a topology can be characterized by two natural axioms. However, the situation changes considerable when moving to sequential spaces. In case of unique limit points Kisyński (Colloq Math 7:205–211, 1959/1960) obtained a result for sequential convergence similar to the one for ultrafilters, but the general case seems more difficult to deal with. Finally, the problem was solved by Koutnik (Closure and topological sequential convergence. In: Convergence Structures 1984 (Bechyně, 1984). Math. Res., vol. 24, pp. 199–204. Akademie-Verlag, Berlin, 1985). In this paper we present an alternative approach to this problem. Our goal is to find a characterization more closely related to the case of ultrafilter convergence. We extend then the result to characterize sequential convergence relations corresponding to Fréchet topologies, as well to those corresponding to pretopological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M.: Relational algebras. In: Reports of the Midwest Category Seminar, IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Berlin (1970)

    Chapter  Google Scholar 

  2. Brown, R.: On sequentially proper maps and a sequential compactification. J. London Math. Soc. 7(2), 515–522 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cartan, H.: Filtres et ultrafiltres. C. R. Acad. Sci. Paris 205, 777–779 (1937)

    MATH  Google Scholar 

  4. Cartan, H.: Théorie des filtres. C. R. Acad. Sci. Paris 205, 595–598 (1937)

    MATH  Google Scholar 

  5. Čech, E.: Topological spaces. Publishing House of the Czechoslovak Academy of Sciences, Prague (1966), Revised edition by Zdeněk Frolík and Miroslav Katětov. Scientific editor, Vlastimil Pták. Editor of the English translation, Charles O. Junge.

  6. Clementino, M.M., Hofmann, D.: Effective descent morphisms in categories of lax algebras. Appl. Categ. Structures 12(5-6), 413–425 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clementino, M.M., Hofmann, D.: Exponentiation in V-categories. Topology Appl. 153, 3113–3128 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clementino, M.M., Hofmann, D., Tholen W.: One setting for all: metric, topology, uniformity, approach structure. Appl. Categ. Structures 12(2), 127–154 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clementino, M.M., Tholen W.: Metric, topology and multicategory – a common approach. J. Pure Appl. Algebra 179(1-2), 13–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dudley, R.M.: On sequential convergence. Trans. Amer. Math. Soc. 112, 483–507 (1964)

    Article  MathSciNet  Google Scholar 

  11. Engelking, R.: General topology. In: Sigma Series in Pure Mathematics, 2nd edn., vol. 6. Heldermann Verlag, Berlin (1989), Translated from the Polish by the author.

    Google Scholar 

  12. Hofmann, D.: An algebraic description of regular epimorphisms in topology. J. Pure Appl. Algebra, 199(1-3), 71–86 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hofmann, D.: Exponentiation for unitary structures. Topology Appl. 153, 3810–3202 (2006)

    Google Scholar 

  14. Hofmann D., Tholen, W.: Kleisli compositions for topological spaces. Topology Appl. 153, 2952–2961 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnstone, P.T.: On a topological topos. Proc. London Math. Soc. (3), 38(2), 237–271 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kisyński, J.: Convergence du type \(\mathcal{L}\). Colloq. Math. 7, 205–211, (1959/1960)

    MathSciNet  Google Scholar 

  17. Koutník, V. : Closure and topological sequential convergence. In: Convergence structures 1984 (Bechyně, 1984). Math. Res., vol. 24, pp. 199–204. Akademie-Verlag, Berlin (1985)

    Google Scholar 

  18. Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. 12, 301–340 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  19. Manes, E.G.: Taut monads and T0-spaces. Theor. Comput. Sci. 275(1-2), 79–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seal, G.J.: Canonical and op-canonical lax algebras. Theory Appl. Categ. 14, 221–243 (electronic) (2005)

    MATH  MathSciNet  Google Scholar 

  21. Smith, H.L., Moore, E.H.: A general theory of limits. Amer. J. Math. 44(2), 102–121 (1922)

    Article  MathSciNet  Google Scholar 

  22. Urysohn, P.: Sur les classes \(\mathcal{L}\) de M. Fréchet. L’Enseignement Mathématique 25, 77–83 (1926)

  23. Wyler, O.: Convergence axioms for topology. In: Papers on General Topology and Applications (Gorham, ME, 1995), Ann. New York Acad. Sci., vol. 806, pp. 465–475. New York Academy of Science, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierres, G., Hofmann, D. Axioms for Sequential Convergence. Appl Categor Struct 15, 599–614 (2007). https://doi.org/10.1007/s10485-007-9095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-007-9095-2

Keywords

Mathematics Subject Classifications (2000)

Navigation