Skip to main content
Log in

Pupil Size Changes as an Active Information Channel for Biofeedback Applications

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Pupil size is usually regarded as a passive information channel that provides insight into cognitive and affective states but defies any further control. However, in a recent study (Ehlers et al. 2015) we demonstrate that sympathetic activity indexed by pupil dynamics allows strategic interference by means of simple cognitive techniques. Utilizing positive/negative imaginings, subjects were able to expand pupil diameter beyond baseline variations; albeit with varying degrees of success and only over brief periods. The current study provides a comprehensive replication on the basis of considerable changes to the experimental set-up. Results show that stricter methodological conditions (controlled baseline settings and specified user instructions) strengthen the reported effect, whereas overall performance increases by one standard deviation. Effects are thereby not restricted to pupillary level. Parallel recordings of skin conductance changes prove a general enhancement of induced autonomic arousal. Considering the stability of the results across studies, we conclude that pupil size information exceeds affective monitoring and may constitute an active input channel in human–computer interaction. Furthermore, since variations in pupil diameter reliably display self-induced changes in sympathetic arousal, the relevance of this parameter is strongly indicated for future approaches in clinical biofeedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Omar, D., Al-Wabil, A., & Fawzi, M. (2013). Using pupil size variation during visual emotional stimulation in measuring affective states of non communicative individuals. In C. Stephanidis (Ed.), Universal access in human-computer interaction. User and context diversity (pp. 253–258). Berlin: Springer.

    Chapter  Google Scholar 

  • Ark, W., Dryer, D., & Lu, D. (1999). The emotion mouse. In H. J. Bullinger, & J. Ziegler (Eds.), Human-computer interaction: Ergonomics and user interfaces (pp. 818–823). Lawrence Erlbaum Assoc.

  • Bayer, M., Sommer, W., & Schacht, A. (2011). Emotional words impact the mind but not the body: Evidence from pupillary responses. Psychophysiology, 48, 1–9.

    Article  Google Scholar 

  • Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. Psychonomic Science, 5, 371–372.

    Article  Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 242–276). Oxford: Oxford University Press.

    Google Scholar 

  • Bremner, F. D. (2012). Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Investigative Ophthalmology and Visual Science, 53, 7343–7347.

    Article  PubMed  Google Scholar 

  • Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43(2), 468–477.

    Article  PubMed  Google Scholar 

  • Ehlers, J., Bubalo, N., Loose, M., & Huckauf, A. (2015). Towards voluntary pupil control—training affective strategies? In Proceedings of the 2nd international conference on physiological computing systems (pp. 5–12). doi:10.5220/0005240000050012.

  • Ehlers, J., Georgi, J., & Huckauf, A. (2014). Improving voluntary pupil size changes for HCI. In Proceedings of the 8th international conference on pervasive computing technologies for healthcare (pp. 343–346). ACM.

  • Ekman, I., Poikola, A., Mäkäräinen, M., Takal, T., & Hämäläinen, P. (2008). Voluntary pupil size change as control in eyes only interaction. In Proceedings of the 2008 symposium on eye tracking research & applications. ETRA ‘08 (pp. 115–118). ACM.

  • Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M. (2000). The undoing effect of positive emotions. Motivation and Emotion, 24, 237–258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgi, J., Kowalski, D., Ehlers, J., & Huckauf, A. (2015). Real-time feedback towards voluntary pupil control in human-computer interaction: Enabling continuous pupillary feedback. In H. M. Fardoun, V. M. R. Penichet, & D. M. Alghazzawi (Eds.), Communications in Computer and Information Science (Vol. 515). ICTs for improving patients rehabilitation research techniques (pp. 104–115). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Healey, J., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6, 156–166.

    Article  Google Scholar 

  • Hess, E. H. (1972). Pupillometrics. In N. S. Greenfield & R. A. Sternbach (Eds.), Handbook of psychology (pp. 491–531). New York: N.S. Holt, Rinehart and Winston.

    Google Scholar 

  • Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Developmental Science, 12, 670–679.

    Article  PubMed  Google Scholar 

  • Jacob, R. J. K. (1996). The future of input devices. ACM Computing Surveys, 28, 177–179.

    Article  Google Scholar 

  • Janisse, M. P. (1974). Pupil size, affect and exposure frequency. Social Behavior and Personality, 2, 125–146.

    Article  Google Scholar 

  • Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: Vanilla or resting baseline. Psychophysiology, 29, 742–750.

    Article  PubMed  Google Scholar 

  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.

    Article  PubMed  Google Scholar 

  • Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191.

    Article  PubMed  Google Scholar 

  • Loewenfeld, I. E. (1966). Comment on Hess’ findings. Survey of Opthalmology, 11, 291–294.

    Google Scholar 

  • Loewenstein, G., & Lerner, J. S. (2003). The role of affect in decision making. In R. Davidson, H. Goldsmith, & K. Scherer (Eds.), Handbook of affective science (pp. 619–642). Oxford: Oxford University Press.

    Google Scholar 

  • Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). In Proceedings of the 2010th symposium on eye-tracking research & applications (pp. 141–144).

  • Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59, 185–198.

    Article  Google Scholar 

  • Raymond, J., Varney, C., Parkinson, L. A., & Gruzelier, J. H. (2005). The effects of alpha/theta neurofeedback on personality and mood. Cognitive Brain Research, 23(2), 287–292.

    Article  PubMed  Google Scholar 

  • Sakakibara, M., Takeuchi, S., & Hayano, J. (1994). Effect of relaxation training on cardiac parasympathetic tone. Psychophysiology, 31, 223–228.

    Article  PubMed  Google Scholar 

  • SensoMotoric Instruments. iView XTM Hi-Speed 1250. http://www.smivision.com/en/gaze-and-eye-tracking-systems/.

  • Sequeira, H., Hot, P., Silvert, L., & Delplanque, S. (2000). Electrical autonomic correlates of emotion. International Journal of Psychophysiology, 71, 50–56.

    Article  Google Scholar 

  • Sirois, S., & Jackson, I. (2014). Pupillometry. WIREs Cognitive Science, 5, 679–692.

    Article  PubMed  Google Scholar 

  • Steinhauer, R., Siegle, G., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52, 77–86.

    Article  PubMed  Google Scholar 

  • Stoll, J., Chatelle, C., Carter, O., Koch, C., Laureys, S., & Einhäuser, W. (2013). Pupil responses allow communication in locked-in syndrome patients. Current Biology, 23, R647–R648.

    Article  PubMed  Google Scholar 

  • Strauch, C., Georgi, J., Huckauf, A., & Ehlers, J. (2015). Slow trends: A problem in analysing pupil dynamics. In Proceedings of the 2nd international conference on physiological computing systems.

  • Vasudeva, S., Claggett, A. L., Tietjen, G. E., & McGrady, A. V. (2003). Biofeedback-assisted relaxation in migraine headache: Relationship to cerebral blood flow velocity in the middle cerebral artery. Headache: The Journal of Head and Face Pain, 43(3), 245–250.

    Article  Google Scholar 

  • Wilhelm, B., Giedke, H., Luèdtke, H., Bittner, E., Hofmann, A., & Wilhelm, H. (2001). Daytime variations in central nervous system activation measured by pupillographic sleepiness test. Journal of Sleep Research, 10, 1–7.

    Article  PubMed  Google Scholar 

  • Winn, B., Whitaker, D., Elliott, D. B., & Phillips, N. J. (1994). Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology and Visual Science, 35, 1132–1137.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the Collaborative Research Center (SFB Transregio 62) by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ehlers.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlers, J., Strauch, C., Georgi, J. et al. Pupil Size Changes as an Active Information Channel for Biofeedback Applications. Appl Psychophysiol Biofeedback 41, 331–339 (2016). https://doi.org/10.1007/s10484-016-9335-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-016-9335-z

Keywords

Navigation