Skip to main content
Log in

Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate (BaTiO3) and cobalt ferrite (CoFe2O4) porous nanoshells, the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions. The nonlocal strain gradient theory (NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation, respectively. Nonlocal governing equations are derived for the nanoshells by Hamilton’s principle. The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment. Finally, extensive parametric surveys are conducted to investigate the influence of diverse parameters, such as dimensionless scale parameters, radius-to-thickness ratios, bi-directional functionally graded (FG) indices, porosity coefficients, and dimensionless electromagnetic potentials on the wave propagation characteristics. Based on the analysis results, the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters. The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MA, J., KE, L. L., and WANG, Y. S. Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. International Journal of Solids and Structures, 51(15–16), 2791–2806 (2014)

    Article  Google Scholar 

  2. GONG, Z., ZHANG, Y. X., PAN, E. N., and ZHANG, C. Three-dimensional general magneto-electro-elastic finite element model for multiphysics nonlinear analysis of layered composites. Applied Mathematics and Mechanics (English Edition), 44(1), 53–72 (2023) https://doi.org/10.1007/s10483-023-2943-8

    Article  MathSciNet  MATH  Google Scholar 

  3. ZHAO, Y. F., ZHANG, S. Q., WANG, X., MA, S. Y., ZHAO, G. Z., and KANG, Z. Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix. Composite Structures, 297, 115969 (2022)

    Article  Google Scholar 

  4. VINYAS, M. Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Materials Research Express, 6(12), 125707 (2020)

    Article  Google Scholar 

  5. JIN, J., HU, N. D., and HU, H. P. Size effects on the mixed modes and defect modes for a nanoscale phononic crystal slab. Applied Mathematics and Mechanics (English Edition), 44(1), 21–34 (2023) https://doi.org/10.1007/s10483-023-2945-6

    Article  MathSciNet  Google Scholar 

  6. MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. ERINGEN, A. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. ERINGEN, A. and EDELEN, D. On nonlocal elasticity. International Journal of Engineering Science, 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. YANG, F., CHONG, A. C., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  10. KE, L. L., WANG, Y. S., and WANG, Z. D. Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E: Low-Dimensional Systems & Nanostructures, 43(7), 1387–1393 (2011)

    Article  Google Scholar 

  11. ZHOU, J., LU, P., XUE, Y., and LU, C. A third-order plate model with surface effect based on the Gurtin-Murdoch surface elasticity. Thin-Walled Structures, 185, 110606 (2023)

    Article  Google Scholar 

  12. ELTAHER, M. A., ABDELRAHMAN, A. A., and ESEN, I. Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load. European Physical Journal Plus, 136(7), 705 (2021)

    Article  Google Scholar 

  13. LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. KUANG, Y. D., HE, X. Q., CHEN, C. Y., and LI, G. Q. Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. Computational Materials Science, 45(4), 875–880 (2009)

    Article  Google Scholar 

  15. MA, Q. and CLARKE, D. R. Size dependent hardness of silver single crystals. Journal of Materials Research, 10(4), 853–863 (1995)

    Article  Google Scholar 

  16. LI, L., HU, Y., and LING, L. Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems & Nanostructures, 75, 118–124 (2016)

    Article  Google Scholar 

  17. JIANG, Y. Y., LI, L., and HU, Y. J. A physically-based nonlocal strain gradient theory for crosslinked polymers. International Journal of Mechanical Sciences, 245, 108094 (2023)

    Article  Google Scholar 

  18. LI, L., TANG, H. S., and HU, Y. J. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science, 123, 81–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. XIAO, W., LI, L., and WANG, M. Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory. Applied Physics A: Materials Science & Processing, 123(6), 388 (2017)

    Article  Google Scholar 

  20. SU, J., HE, W., and ZHOU, K. Study on vibration behavior of functionally graded porous material plates immersed in liquid with general boundary conditions. Thin-Walled Structures, 182, 110166 (2023)

    Article  Google Scholar 

  21. TANG, Y., XU, J. Y., and YANG, T. Z. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43(4), 479–496 (2022) https://doi.org/10.1007/s10483-022-2839-6

    Article  MathSciNet  MATH  Google Scholar 

  22. AREFI, M. Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mechanica, 227(9), 2529–2542 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. GHAHNAVIEH, S., HOSSEINI-HASHEMI, S., RAJABI, K., and GHAHNAVIEH, S. A higherorder nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory. European Physical Journal Plus, 133(12), 1–21 (2018)

    Article  Google Scholar 

  24. MAHESH, V. and HARURSAMPATH, D. Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mechanics of Advanced Materials and Structures, 29(7), 1047–1071 (2022)

    Article  Google Scholar 

  25. AHARI, M. F. and GHADIRI, M. Resonator vibration of a magneto-electro-elastic nano-plate integrated with FGM layer subjected to the nano mass-Spring-damper system and a moving load. Waves in Random and Complex Media (2022) https://doi.org/10.1080/17455030.2022.2053233

  26. YURY, G. Nanomaterials Handbook, Taylor and Francis, CRC Press, Florida (2017)

    Google Scholar 

  27. ESEN, I. and ÖZMEN, R. Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates. Mechanics Based Design of Structures and Machines (2022) https://doi.org/10.1080/15397734.2022.2152045

  28. BAMDAD, M., MOHAMMADIMEHR, M., and ALAMBEIGI, K. Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: magneto-electro-elastic vibration and buckling solution. Journal of Vibration and Control, 25(23–24), 2875–2893 (2019)

    Article  MathSciNet  Google Scholar 

  29. EBRAHIMI, F., FARAZMANDNIA, N., KOKABA, M. R., and MAHESH, V. Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Engineering with Computers, 37(2), 921–936 (2021)

    Article  Google Scholar 

  30. ROSTAMI, R. and MOHAMMADIMEHR, M. Vibration control of rotating sandwich cylindrical shell reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Engineering with Computers, 38(1), 87–100 (2022)

    Article  Google Scholar 

  31. NEMAT-ALLA, M. Reduction of thermal stresses by developing two-dimensional functionally graded materials. International Journal of Solids and Structures, 40(26), 7339–7356 (2003)

    Article  MATH  Google Scholar 

  32. TANG, Y., MA, Z. S., DING, Q., and WANG, T. Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: a nano-structure analysis. Composite Structures, 264, 113746 (2021)

    Article  Google Scholar 

  33. TANG, Y., LYU, X., and YANG, T. Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration. Composites Part B: Engineering, 156, 319–331 (2019)

    Article  Google Scholar 

  34. PYDAH, A. and BATRA, R. C. Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Composite Structures, 172, 45–60 (2017)

    Article  Google Scholar 

  35. NEJAD, M. Z. and HADI, A. Eringen’s non-local elasticity theory for bending analysis of bidirectional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, 106, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. CHEN, M., JIN, G., MA, X., ZHANG, Y., YE, T., and LIU, Z. Vibration analysis for sector cylindrical shells with bi-directional functionally graded materials and elastically restrained edges. Composites Part B: Engineering, 153, 346–363 (2018)

    Article  Google Scholar 

  37. VINYAS, M. Computational analysis of smart magneto-electro-elastic materials and structures: review and classification Archives of Computational Methods in Engineering, 28(3), 1205–1248 (2020)

    Article  MathSciNet  Google Scholar 

  38. HASHEMI, S. and JAFARI, A. A. Nonlinear free and forced vibrations of in-plane bi-directional functionally graded rectangular plate with temperature-dependent properties. International Journal of Structural Stability and Dynamics (2020) https://doi.org/10.1142/S0219455420500972

  39. KHANIKI, H. B. and RAJASEKARAN, S. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory. Materials Research Express, 5(5), 055703 (2018)

    Article  Google Scholar 

  40. LAL, R. and DANGI, C. Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen’s nonlocal theory incorporating the surface effect. Applied Mathematics and Computation, 395, 125857 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. TANG, Y., LI, C. L., and YANG, T. Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electro-elastic fields. Engineering Analysis with Boundary Elements, 146, 808–823 (2023)

    Article  MATH  Google Scholar 

  42. CHEN, X., CHEN, L., HUANG, S., LI, M., and LI, X. Nonlinear forced vibration of in-plane bidirectional functionally graded materials rectangular plate with global and localized geometrical imperfections. Applied Mathematical Modelling, 93, 443–466 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. EBRAHIMI, F. and DABBAGH, A. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Composite Structures, 162, 281–263 (2017)

    Article  Google Scholar 

  44. LIU, C., YU, J., ZHANG, B., ZHANG, X., and ELMAIMOUNI, L. Analysis of Lamb wave propagation in a functionally graded piezoelectric small-scale plate based on the modified couple stress theory. Composite Structures, 265, 113733 (2021)

    Article  Google Scholar 

  45. FAGHIDIAN, S. A., ZUR, K. K., REDDY, J. N., and FERREIRA, A. J. M. On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity. Composite Structures, 279, 114819 (2022)

    Article  Google Scholar 

  46. LI, L., HU, Y., and LING, L. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Composite Structures, 133, 1079–1092 (2015)

    Article  Google Scholar 

  47. LIU, C., YU, J., ZHANG, X., ZHANG, B., and ELMAIMOUNI, L. Reflection behavior of elastic waves in the functionally graded piezoelectric microstructures. European Journal of Mechanics - A/Solids, 81, 103955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. NAM, V. N., LEE, J., and NGUYEN-XUAN, H. Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Composites Part B: Engineering, 172, 769–784 (2019)

    Article  Google Scholar 

  49. LI, S., ZHENG, S., and CHEN, D. Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin-Walled Structures, 156, 106999 (2020)

    Article  Google Scholar 

  50. MA, L. H., KE, L. L., REDDY, J. N., YANG, J., KITIPORNCHAI, S., and WANG, Y. Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Composite Structures, 199, 10–23 (2018)

    Article  Google Scholar 

  51. BABADI, A. F., BENI, Y. T., and ZUR, K. K. On the flexoelectric effect on size-dependent static and free vibration responses of functionally graded piezo-flexoelectric cylindrical shells. Thin-Walled Structures, 179, 109699 (2022)

    Article  Google Scholar 

  52. ESEN, I. and OZMEN R. Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Composite Structures, 296, 115878 (2022)

    Article  Google Scholar 

  53. LI, Z. N., LIU, J., HU, B., WANG, Y. X., and SHEN, H. M. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation. Applied Mathematics and Mechanics (English Edition), 44(1), 35–52 (2023) https://doi.org/10.1007/s10483-023-2953-7

    Article  MathSciNet  MATH  Google Scholar 

  54. BARATI, M. R. Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta Mechanica, 229(3), 1183–1196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. ARANI, A. G., JAMALI, M., GHORBANPOUR-ARANI, A. H., KOLAHCHI, R., and MOSAYYEBI, M. Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 231(2), 387–403 (2017)

    Google Scholar 

  56. LIU, H. and LYU, Z. Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers. Thin-Walled Structures, 151, 106749 (2020)

    Article  Google Scholar 

  57. HE, D., SHI, D., WANG, Q., and MA, C. Free vibration characteristics and wave propagation analysis in nonlocal functionally graded cylindrical nanoshell using wave-based method. Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) https://doi.org/10.1007/s40430-021-03008-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of Sichuan Province of China (Nos. 2022NSFSC2003, 23NSFSC0849, and 2023NSFSC1300)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, J., Hu, B. et al. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory. Appl. Math. Mech.-Engl. Ed. 44, 1821–1840 (2023). https://doi.org/10.1007/s10483-023-3043-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3043-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation