Skip to main content
Log in

A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Understanding and modeling flows over porous layers are of great industrial significance. To accurately solve the turbulent multi-scale flows on complex configurations, a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed. The mesh layout and the detailed rescaling procedure are also introduced. Direct numerical simulations (DNSs) for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity (D3Q19) multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to validate the accuracy, adaptability, and computational performance of the present rescaling algorithm. The results, which are consistent with the previous DNS studies based on the finite difference method and the LBM, demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries. The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN, S. and DOOLEN, G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. OBRECHT, C., KUZNIK, F., TOURANCHEAU, B., and ROUX, J. J. Multi-GPU implementation of the lattice Boltzmann method. Computers & Mathematics with Applications, 65(2), 252–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. KRÜGER, T., KUSUMAATMAJA, H., KUZMIN, A., SHARDT, O., SILVA, G., and VIGGEN, E. M. The Lattice Boltzmann Method, Springer, Cham, 4–15 (2017)

    Book  MATH  Google Scholar 

  4. EGGELS, J. G. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 17(3), 307–323 (1996)

    Article  Google Scholar 

  5. JAHANSHALOO, L., POURYAZDANPANAH, E., and CHE SIDIK, N. A. A review on the application of the lattice Boltzmann method for turbulent flow simulation. Numerical Heat Transfer, Part A: Applications, 64(11), 938–953 (2013)

    Article  Google Scholar 

  6. AIDUN, C. K. and CLAUSEN, J. R. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. LIU, H., KANG, Q., LEONARDI, C. R., SCHMIESCHEK, S., NARVÁEZ, A., JONES, B. D., WILLIAMS, J. R., VALOCCHI, A. J., and HARTING, J. Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, 20(4), 777–805 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. YANG, F. C. and CHEN, X. P. Numerical simulation of two-dimensional viscous flows using combined finite element-immersed boundary method. Journal of Hydrodynamics, 27(5), 658–667 (2015)

    Article  Google Scholar 

  9. LI, Q. X., PAN, M., and DONG, Y. H. Turbulence modulation and heat transfer enhancement in channels roughened by cube-covered surface. Computers & Fluids, 165, 33–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. LI, Q. X., PAN, M., ZHOU, Q., and DONG, Y. H. Turbulent drag reduction by spanwise oscillations of a channel wall with porous layer. Computers & Fluids, 180, 1–10 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. HUANG, R. and WU, H. Multiblock approach for the passive scalar thermal lattice Boltzmann method. Physical Review E, 89(4), 043303 (2014)

    Article  Google Scholar 

  12. KARANI, H. and HUBER, C. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media. Physical Review E, 91 (2), 023304 (2015)

    Article  MathSciNet  Google Scholar 

  13. PAN, M., LI, Q., TANG, S., and DONG, Y. H. Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method. Applied Mathematics and Mechanics (English Edition), 39(4), 477–488 (2018) https://doi.org/10.1007/s10483-018-2316-8

    Article  MathSciNet  Google Scholar 

  14. FILIPPOVA, O. and HÄNEL, D. Grid refinement for lattice-BGK models. Journal of Computational Physics, 147(1), 219–228 (1998)

    Article  MATH  Google Scholar 

  15. YU, D., MEI, R., and SHYY, W. A multi-block lattice Boltzmann method for viscous fluid flows. International Journal for Numerical Methods in Fluids, 39(2), 99–120 (2002)

    Article  MATH  Google Scholar 

  16. DUPUIS, A. and CHOPARD, B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Physical Review E, 67(6), 066707 (2003)

    Article  Google Scholar 

  17. BHATNAGAR, P. L., GROSS, E. P., and KROOK, M. A model for collision processes in gases, I, small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511 (1954)

    Article  MATH  Google Scholar 

  18. KUWATA, Y. and SUGA, K. Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. Journal of Computational Physics, 311, 348–362 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. WU, C. M., ZHOU, Y. S., and LIN, C. A. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster. Computers & Fluids, 210, 104647 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’HUMIERES, D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360(1792), 437–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. TANG, Z., LIU, N. S., and DONG, Y. H. Lattice Boltzmann simulations of turbulent shear flow between parallel porous walls. Applied Mathematics and Mechanics (English Edition), 35(12), 1479–1494 (2014) https://doi.org/10.1007/s10483-014-1885-6

    Article  MathSciNet  Google Scholar 

  22. LIU, Z., LI, S., RUAN, J., ZHANG, W. B., ZHOU, L. P., HUANG, D. M., and XU, J. X. A new multi-level grid multiple-relaxation-time lattice Boltzmann method with spatial interpolation. Mathematics, 11 (5), 1089 (2023)

    Article  Google Scholar 

  23. LAGRAVA, D., MALASPINAS, O., LATT, J., and CHOPARD, B. Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics, 231(14), 4808–4822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. LALLEMAND, P. and LUO, L. S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61 (6), 6546 (2000)

    Article  MathSciNet  Google Scholar 

  25. GUO, Z., ZHENG, C., and SHI, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65(4), 046308 (2002)

    Article  MATH  Google Scholar 

  26. KIM, J., MOIN, P., and MOSER, R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  27. KUWATA, Y. and SUGA, K. Direct numerical simulation of turbulence over anisotropic porous media. Journal of Fluid Mechanics, 831, 41–71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. BREUGEM, W., BOERSMA, B., and UITTENBOGAARD, R. The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562, 35–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. CHIKATAMARLA, S. S., FROUZAKIS, C. E., KARLIN, I. V., TOMBOULIDES, A. G., and BOULOUCHOS, K. B. Lattice Boltzmann method for direct numerical simulation of turbulent flows. Journal of Fluid Mechanics, 656, 298–308 (2010)

    Article  MATH  Google Scholar 

  30. BESPALKO, D., POLLARD, A., and UDDIN, M. Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow. Computers & Fluids, 54, 143–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. SUGA, K., OKAZAKI, Y., MATSUO, T., TANEO, A., and KUWATA, T. Measurement of turbulent square duct flows over anisotropic porous media. 11th International Symposium on Turbulence and Shear Flow Phenomena(TSFP11), Begel House Inc., Southampton (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Dong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Citation: LI, H. Y., LIU, W. J., and DONG, Y. H. A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations. Applied Mathematics and Mechanics (English Edition), 44(9), 1597–1612 (2023) https://doi.org/10.1007/s10483-023-3028-9

Project supported by the National Natural Science Foundation of China (Nos. 12172207 and 92052201)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, W. & Dong, Y. A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations. Appl. Math. Mech.-Engl. Ed. 44, 1597–1612 (2023). https://doi.org/10.1007/s10483-023-3028-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3028-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation