Skip to main content

DNS/LES Studies of Turbulent Flows Based on the Cumulant Lattice Boltzmann Approach

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14

Abstract

In many industrial and environmental problems we encounter turbulent flows over porous surfaces which also penetrate the porous medium to different extents. Although there is a wealth of literature on macroscopic models of such phenomena which do not take the pore scale explicitly into account, these approaches typically require some additional transport coefficients to match experimentally obtained statistics for mass, momentum and energy transport across such interfaces. In this project we conduct Direct Navier-Stokes (DNS) and Large Eddy Simulation (LES) computations of turbulent flows which explicitly take into account specific pore scale geometries obtained from computer tomography imaging and do not use any explicit turbulence modeling. In this first part of the project we conducted validation studies for two canonical turbulent flows, i.e. flow around a plate and flow in a porous channel. Subsequently, we compare simulation results of turbulent flows over a porous sand and to experimental results and demonstrate the validity of our approach. Finally we discuss our approach to address evaporation processes on a pore scale which is based on a separation of time-scales. The newly developed cumulant Lattice Boltzmann scheme implemented as part of our research Code VirtualFluids shows a favorable behavior with respect to parallelization efficiency as well as to numerical stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005). doi:http://dx.doi.org/10.1063/1.1835771

  2. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)

    Google Scholar 

  3. Freudiger, S., Hegewald, J., Krafczyk, M.: A parallelisation concept for a multi-physics lattice Boltzmann prototype based on hierarchical grids. Prog. Comput. Fluid Dyn. 8, 168–178 (2008)

    Article  MATH  Google Scholar 

  4. Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice Boltzmann automata for high reynolds number flow. Phys. Rev. E 73, 066,705 (2006). doi:10.1103/PhysRevE.73.066705

    Google Scholar 

  5. Geier, M., Sch&nherr, M., Pasquali, A., Krafczyk, M.: The cumulant Lattice Boltzmann Equation in three dimensions: theory and validation, submitted to Computers & Mathematics with Applications (CAMWA), 2014

    Google Scholar 

  6. Geier, M., Greiner, A., Korvink, J.G.: A factorized central moment lattice Boltzmann method. Eur. Phys. J. Spec. Top. 171(1), 55–61 (2009). doi:10.1140/epjst/e2009-01011-1

    Article  Google Scholar 

  7. Geller, S., Uphoff, S., Krafczyk, M.: Turbulent jet computations based on MRT and cascaded lattice Boltzmann models. Comput. Math. Appl. 65(12), 1956–1966 (2013). Cited By (since 1996)1

    Google Scholar 

  8. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949). doi:10.1002/cpa.3160020403

    Article  MATH  MathSciNet  Google Scholar 

  9. Holman, D.M., Brionnaud, R.M., Abiza, Z.: Solution to industry benchmark problems with the lattice-Boltzmann code xflow, http://www.xflowcfd.com/pdf/ECCOMAS2012_XFlow.pdf

  10. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013). doi:http://dx.doi.org/10.1016/j.jcp.2012.07.023

  12. Premnath, K., Banerjee, S.: On the three-dimensional central moment lattice Boltzmann method. J. Stat. Phys. 143(4), 747–794 (2011). doi:10.1007/s10955-011-0208-9. http://dx.doi.org/10.1007/s10955-011-0208-9

  13. Schlichting, H., Gersten, K.: Grenzschicht-Theorie. Springer, Berlin (2006)

    Google Scholar 

  14. Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for cpus and gpus. Comput. Math. Appl. 61(12), 3730–3743 (2011)

    Article  Google Scholar 

  15. Seeger, S., Hoffmann, H.: The cumulant method for computational kinetic theory. Contin. Mech. Thermodyn. 12(6), 403–421 (2000). doi:10. 1007/s001610050145

    Google Scholar 

  16. Seeger, S., Hoffmann, K.: The cumulant method applied to a mixture of maxwell gases. Contin. Mech. Thermodyn. 16(5), 515–515 (2004). doi:10.1007/s00161-004-0183-3

    Article  MathSciNet  Google Scholar 

  17. Seeger, S., Hoffmann, K.: The cumulant method for the space-homogeneous Boltzmann equation. Contin. Mech. Thermodyn. 17(1), 51–60 (2005). doi:10.1007/s00161-004-0187-z

    Article  MATH  MathSciNet  Google Scholar 

  18. White, A., Chong, C.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011). Cited By (since 1996)7

    Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial support of the Collaborative Research Center SFB 880 and the Research Training Group MUSIS FOR 1083.

The Höchstleistungsrechenzentrum Stuttgart (HLRS) is gratefully acknowledged for providing the required CPU resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Krafczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Krafczyk, M., Kucher, K., Wang, Y., Geier, M. (2015). DNS/LES Studies of Turbulent Flows Based on the Cumulant Lattice Boltzmann Approach. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_34

Download citation

Publish with us

Policies and ethics