Skip to main content
Log in

Analysis of fracture propagation and shale gas production by intensive volume fracturing

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing. The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method (DDM) and the Picard iterative method. The shale gas flow considers multiple transport mechanisms, and the flow in the fracture network is handled by the embedded discrete fracture model (EDFM). A series of numerical simulations are conducted to analyze the effects of the cluster number, stage spacing, stress difference coefficient, and natural fracture distribution on the stimulated fracture area, fractal dimension, and cumulative gas production, and their correlation coefficients are obtained. The results show that the most influential factors to the stimulated fracture area are the stress difference ratio, stage spacing, and natural fracture density, while those to the cumulative gas production are the stress difference ratio, natural fracture density, and cluster number. This indicates that the stress condition dominates the gas production, and employing intensive volume fracturing (by properly increasing the cluster number) is beneficial for improving the final cumulative gas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG, S. C., LEI, X., ZHOU, Y. S., and XU, G. Q. Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing. Petroleum Science, 12(4), 674–682 (2015)

    Article  Google Scholar 

  2. LI, S. B., LI, X., and ZHANG, D. X. A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments. Journal of Natural Gas Science and Engineering, 34, 64–84 (2016)

    Article  Google Scholar 

  3. TANG, H. Y., WANG, S. H., ZHANG, R. H., LI, S. B., ZHANG, L. H., and WU, Y. S. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method. Journal of Petroleum Science and Engineering, 179, 378–393 (2019)

    Article  Google Scholar 

  4. GUO, D. L., JI, L. J., ZHAO, J. Z., and LIU, C. Q. 3-D fracture propagation simulation and production prediction in coalbed. Applied Mathematics and Mechanics (English Edition), 22(4), 385–393 (2001) https://doi.org/10.1023/A:1016337331556

    Article  MATH  Google Scholar 

  5. WENG, X. W., KRESS, O., COHEN, C., WU, R. T., and GU, H. R. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. SPE Production and Operation, 26(4), 368–380 (2011)

    Article  Google Scholar 

  6. KRESS, O., WENG, X. W., GU, H. R., and WU, R. T. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mechanics and Rock Engineering, 46, 555–568 (2013)

    Article  Google Scholar 

  7. WONG, S. W., GEILIKMAN, M., and XU, G. S. Interaction of multiple hydraulic fractures in horizontal wells. SPE Middle East Unconventional Gas Conference and Exhibition, SPE-167161-MS, Muscat (2013)

  8. WU, K. and OLSON, J. E. Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE Journal, 20, 337–346 (2014)

    Article  Google Scholar 

  9. ZHAO, J. Z., CHEN, X. Y., LI, Y. M., and FU, B. Simulation of simultaneous propagation of multiple hydraulic fractures in horizontal wells. Journal of Petroleum Science and Engineering, 147, 788–800 (2016)

    Article  Google Scholar 

  10. CHEN, X. Y., LI, Y. M., ZHAO, J. Z., XU, W. X., and FU, D. Y. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells. Journal of Natural Gas Science and Engineering, 51, 44–52 (2018)

    Article  Google Scholar 

  11. CHENG, W., JIANG, G. S., XIE, J. Y., WEI, Z. J., ZHOU, Z. D., and LI, X. D. A simulation study comparing the Texas two-step and the multistage consecutive fracturing method. Petroleum Science, 16, 1121–1133 (2019)

    Article  Google Scholar 

  12. CHENG, W., LU, C. H., and XIAO, B. Perforation optimization of intensive-stage fracturing in a horizontal well using a coupled 3D-DDM fracture model. Energies, 14, 2393 (2021)

    Article  Google Scholar 

  13. YAO, J., ZENG, Q. D., HUANG, Z. Q., SUN, H., and ZHANG, L. Numerical modeling of simultaneous hydraulic fracturing in the mode of multi-well pads. Science China-Technological Sciences, 60(2), 232–242 (2017)

    Article  Google Scholar 

  14. ZHANG, F. S., HUANG, L. K., YANG, L., DONTSOV, E., WENG, D. W., LIANG, H. B., YIN, Z. R., and TANG, J. Z. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation. Petroleum Science, 19, 296–308 (2022)

    Article  Google Scholar 

  15. WANG, X. L., SHI, F., LIU, H., and WU, H. A. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. Journal of Natural Gas Science and Engineering, 33, 56–69 (2016)

    Article  Google Scholar 

  16. ZENG, Q. D., BO, L., LIU, W. Z., HUANG, Z. Q., and YAO, J. An investigation of hydraulic fracture propagation in multi-layered formation via the phase field method. Computers and Geotechnics, 156, 105258 (2023)

    Article  Google Scholar 

  17. ZENG, Q. D., YAO, J., and SHAO, J. F. An extended finite element solution for hydraulic fracturing with thermo-hydro-elastic-plastic coupling. Computer Methods in Applied Mechanics and Engineering, 364, 112967 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. SALIMZADEH, S., PALUSZNY, A., and ZIMMERMAN, R. W. Three-dimensional poroelastic effects during hydraulic fracturing in permeable rocks. International Journal of Solids and Structures, 108, 153–163 (2017)

    Article  Google Scholar 

  19. MCCLURE, M. W., BABAZADEH, M., SHIOZAWA, S., and HUANG, J. Fully coupled hydrome-chanical simulation of hydraulic fracturing in 3D discrete-fracture networks. SPE Journal, 21(4), 1302–1320 (2016)

    Article  Google Scholar 

  20. YAO, C., SHAO, J. F., JIANG, Q. H., and ZHOU, C. B. A new discrete method for modeling hydraulic fracturing in cohesive porous materials. Journal of Petroleum Science and Engineering, 180, 257–267 (2019)

    Article  Google Scholar 

  21. LIU, W. Z., ZENG, Q. D., and YAO, J. Numerical simulation of elasto-plastic hydraulic fracture propagation in deep reservoir coupled with temperature field. Journal of Petroleum Science and Engineering, 171, 115–126 (2018)

    Article  Google Scholar 

  22. KARIMI-FARD, M., DURLOFSKY, L. J., and AZIZ, K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2), 227–236 (2004)

    Article  Google Scholar 

  23. LI, L. and LEE, S. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Evaluation and Engineering, 11 (4), 750–758 (2008)

    Article  Google Scholar 

  24. SUN, H., YAO, J., GAO, S. H., FAN, D. Y., WANG, C. C., and SUN, Z. X. Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 19, 406–419 (2013)

    Article  Google Scholar 

  25. YUAN, B., SU, Y. L., MOGHANLOO, R. G., RUI, Z. H., WANG, W. D., and SHANG, Y. Y. A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. Journal of Natural Gas Science and Engineering, 23, 227–238 (2015)

    Article  Google Scholar 

  26. YUAN, J. W., JIANG, R. Z., and ZHANG, W. The workflow to analyze hydraulic fracture effect on hydraulic fractured horizontal well production in composite formation system. Advances in Geo-Energy Research, 2(3), 319–342 (2018)

    Article  Google Scholar 

  27. XU, Y. F., SHENG, G. L., ZHAO, H., HUI, Y. N., and GONG, J. A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs. Journal of Petroleum Science and Engineering, 199, 108292 (2021)

    Article  Google Scholar 

  28. SHARIFI, M., KELKAR, M., and KARKEVANDI-TALKHOONCHEH, A. A workflow for flow simulation in shale oil reservoirs: a case study in woodford shale. Advances in Geo-Energy Research, 5(4), 365–675 (2021)

    Article  Google Scholar 

  29. ZHANG, R. H., WU, J. F., ZHAO, Y. L., HE, X., and WANG, R. H. Numerical simulation of the feasibility of supercritical CO2 storage and enhanced shale gas recovery considering complex fracture networks. Journal of Petroleum Science and Engineering, 204, 108671 (2021)

    Article  Google Scholar 

  30. WAN, X. C., RASOULI, V., DAMJANC, B., YU, W., and LIU, W. Coupling of fracture model with reservoir simulation to simulate shale gas production with complex fractures and nanopores. Journal of Petroleum Science and Engineering, 193, 107422 (2020)

    Article  Google Scholar 

  31. ZHAO, Y. L., LU, G., ZHANG, L. H., WEI, Y. S., GUO, J. J., and CHANG, C. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model. Journal of Petroleum Science and Engineering, 195, 107588 (2020)

    Article  Google Scholar 

  32. ZHANG, R. H., ZHANG, L. H., TANG, H. Y., CHEN, S. N., ZHAO, Y. L., WU, J. F., and WANG, K. R. A simulator for production prediction of multistage fractured horizontal well in shale gas reservoir considering complex fracture geometry. Journal of Natural Gas Science and Engineering, 67, 14–29 (2019)

    Article  Google Scholar 

  33. WEI, S. M., XIA, Y., JIN, Y., CHEN, M., and CHEN, K. P. Quantitative study in shale gas behaviors using a coupled triple-continuum and discrete fracture model. Journal of Petroleum Science and Engineering, 174, 49–69 (2019)

    Article  Google Scholar 

  34. SANGNIMNUAN, A., LI, J., and WU, K. Development of efficiently coupled fluid-flow/Geomechanics model to predict stress evolution in unconventional reservoirs with complex-fracture geometry. SPE Journal, 23(3), 640–660 (2018)

    Article  Google Scholar 

  35. YAN, X., HUANG, Z. Q., YAO, J., LI, Y., FAN, D. Y., SUN, H., and ZHANG, K. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE Journal, 23(4), 1412–1437 (2018)

    Article  Google Scholar 

  36. LIU, L. J., LIU, Y., YAO, J., and HUANG, Z. Q. Efficient coupled multiphase-flow and geomechanics modeling of well performance and stress evolution in shale-gas reservoirs considering dynamic fracture properties. SPE Journal, 25(3), 1523–1542 (2020)

    Article  Google Scholar 

  37. CROUCH, S. L. and STARFIELD, A. M. Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London (1983)

    Book  MATH  Google Scholar 

  38. OLSON, J. E. Predicting fracture swarms — the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geological Society of London Special Publications, 231 (1), 73–88 (2015)

    Article  Google Scholar 

  39. DEHGHAN, A. N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture. Engineering Fracture Mechanics, 240, 107330 (2020)

    Article  Google Scholar 

  40. RENSHAW, C. E. and POLLARD, D. D. An experimentally verified criterion for propagation across unbounded frictional interfaces in Brittle, linear elastic materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32, 237–249 (1995)

    Article  Google Scholar 

  41. ZHANG, J., LI, Y. W., PAN, Y. S., WANG, X. Y., YAN, M. S., SHI, X. D., ZHOU, X. J., and LI, H. L. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir. Engineering Geology, 28, 105981 (2021)

    Article  Google Scholar 

  42. SONG, C. P., LU, Y. Y., XIA, B. W., and HU, K. Effects of natural fractures on hydraulic fractures propagation of coal seams. Journal of Northeastern University (Natural Science), 35(5), 756–760 (2014)

    Google Scholar 

  43. SUN, T. W., ZENG, Q. D., and XING, H. L. A quantitative model to predict hydraulic fracture propagating across cemented natural fracture. Journal of Petroleum Science and Engineering, 208, 109595 (2022)

    Article  Google Scholar 

  44. ZHENG, H., PU, C. S., and SUN, C. Study on the interaction between hydraulic fracture and natural fracture based on extended finite element method. Engineering Fracture Mechanics, 230, 106981 (2020)

    Article  Google Scholar 

  45. GU, H. R., WENG, X., LUND, J., MACK, M., GANGULY, U., and SUAREZRIVERA, R. Hydraulic fracture crossing natural fracture at non-orthogonal angles: a criterion and its validation. SPE Production and Operation, 27(1), 20–26 (2012)

    Article  Google Scholar 

  46. ZENG, Q. D. and YAO, J. Numerical simulation of fracture network generation in naturally fractured reservoirs. Journal of Natural Gas Science and Engineering, 30, 430–443 (2016)

    Article  Google Scholar 

  47. WILLINGHAM, J. D., TAN, H. C., and NORMA, L. R. Perforation friction pressure of fracturing fluid slurries. Low Permeability Reservoirs Symposium, SPE-25891-MS, Denver (1993)

  48. SHEN, W. H. and ZHAO, Y. P. Quasi-static crack growth under symmetrical loads in hydraulic fracturing. Journal of Applied Mechanics, 84, 081009 (2017)

    Article  Google Scholar 

  49. SHEN, W. H. and ZHAO, Y. P. Combined effect of pressure and shear stress on penny-shaped fluid-driven cracks. Journal of Applied Mechanics, 85, 031003 (2018)

    Article  Google Scholar 

  50. SHEN, W. H., YANG, F. Q., and ZHAO, Y. P. Unstable crack growth in hydraulic fracturing: the combined effects of pressure and shear stress for a power-law fluid. Engineering Fracture Mechanics, 225, 106245 (2020)

    Article  Google Scholar 

  51. PEIRCE, A. Hermite cubic collocation scheme for plain strain hydraulic fractures. Computer Methods in Applied Mechanics and Engineering, 199, 1949–1962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. ADACHI, J., SIEBRITS, E., PEIRCE, A., and DESROCHES, J. Computer simulation of hydraulic fractures. International Journal of Rock Mechanics & Mining Sciences, 44, 739–757 (2007)

    Article  Google Scholar 

  53. WANG, W., YAO, J., SUN, H., and SONG, W. H. Influence of gas transport mechanisms on the productivity of multi-stage fractured horizontal wells in shale gas reservoirs. Petroleum Science, 12, 664–673 (2015)

    Article  Google Scholar 

  54. YAO, J., SUN, H., FAN, D. Y., WANG, C. C., and SUN, Z. X. Numerical simulation of gas transport mechanisms in tight shale gas reservoir. Petroleum Science, 10, 528–537 (2013)

    Article  Google Scholar 

  55. FLORENCE, F., RUSHING, J., NEWSHAM, K., and BLASINGAME, T. Improved permeability prediction relations for low permeability sands. Rocky Mountain Oil and Gas Technology Symposium, SPE, Denver (2007)

    Google Scholar 

  56. GEERTSMA, J. and DE KLERK, F. A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21, 1571–1581 (1969)

    Article  Google Scholar 

  57. ZENG, Y. J., ZHANG, X., and ZHANG, B. P. Stress redistribution in multi-stage hydraulic fracturing of horizontal wells in shales. Petroleum Science, 12(4), 628–635 (2015)

    Article  Google Scholar 

  58. SUN, F. Q., SHEN, W. H., and ZHAO, Y. P. Deflected trajectory of a single fluid-driven crack under anisotropic in-situ stress. Extreme Mechanics Letters, 29, 100483 (2019)

    Article  Google Scholar 

  59. RUDOLF, J., WILIAM, J., and DONNA, L. Statistical Methods, Academic Press, New York (2010)

    Google Scholar 

  60. SUN, F. Q., DU, S. H., and ZHAO, Y. P. Fluctuation of fracturing curves indicates in-situ brittleness and reservoir fracturing characteristics in unconventional energy exploitation. Energy, 252, 124043 (2022)

    Article  Google Scholar 

  61. DU, S. H., SHEN, W. H., and ZHAO, Y. P. Quantitative evaluation of stress sensitivity in shale reservoirs: ideas and applications. Chinese Journal of Theoretical and Applied Mechanics, 54, 2235–2247 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Project supported by the National Natural Science Foundation of China (Nos. 52274038, 52034010, and 42174143), the Taishan Scholars Project (No. tsqnz20221140), and the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) of China (No. PLN2020-5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Bo, L., Liu, L. et al. Analysis of fracture propagation and shale gas production by intensive volume fracturing. Appl. Math. Mech.-Engl. Ed. 44, 1385–1408 (2023). https://doi.org/10.1007/s10483-023-3021-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3021-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation