Skip to main content
Log in

A bio-inspired spider-like structure isolator for low-frequency vibration

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a quasi-zero stiffness (QZS) isolator composed of a curved beam (as spider foot) and a linear spring (as spider muscle) inspired by the precise capturing ability of spiders in vibrating environments. The curved beam is simplified as an inclined horizontal spring, and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator. The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region. The harmonic balance method (HBM) is used to explore the effects of the excitation amplitude, damping ratio, and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance, and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method (RK-4). The experimental data of the QZS isolator prototype are fitted to a nine-degree polynomial, and the RK-4 can theoretically predict the experimental results. The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator. The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz, and it can isolate 90% of the excitation signal at 7 Hz. The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SON, L., BUR, M., and RUSLI, M. A new concept for UAV landing gear shock vibration control using pre-straining spring momentum exchange impact damper. Journal of Vibration and Control, 24(8), 1455–1468 (2018)

    Article  MathSciNet  Google Scholar 

  2. LIU, Z., CHEN, Y., SONG, H., XING, Z., TIAN, H., and SHAN, X. High-speed handling robot with bionic end-effector for large glass substrate in clean environment. Sensors, 22(1), 149 (2022)

    Article  Google Scholar 

  3. MA, H., CHI, W., WANG, C., and LUO, J. Design of a maglev stewart platform for the micro-gravity vibration isolation. Aerospace, 9(9), 514 (2022)

    Article  Google Scholar 

  4. WANG, J. Active restricted control for harmonic vibration suppression. International Journal of Structural Stability and Dynamics, 19(12), 1971007 (2019)

    Article  MathSciNet  Google Scholar 

  5. PAUL, S. and YU, W. A method for bidirectional active control of structures. Journal of Vibration and Control, 24(15), 3400–3417 (2018)

    Article  MathSciNet  Google Scholar 

  6. ESHKEVARI, S. S., ESHKEVARI, S. S., SEN, D., and PAKZAD, S. N. Active structural control framework using policy-gradient reinforcement learning. Engineering Structures, 274, 115122 (2022)

    Article  Google Scholar 

  7. YANG, J., NING, D., SUN, S. S., ZHENG, J., LU, H., NAKANO, M., ZHANG, S., DU, H., and LI, W. H. A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component. Mechanical Systems and Signal Processing, 147, 107071 (2021)

    Article  Google Scholar 

  8. MIKULOWSKI, G., POPLAWSKI, B., and JANKOWSKI, L. Semi-active vibration control based on switchable transfer of bending moments: study and experimental validation of control performance. Smart Materials and Structures, 30(4), 045005 (2021)

    Article  Google Scholar 

  9. CHAI, Y., JING, X., and GUO, Y. A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property. Mechanical Systems and Signal Processing, 168, 108651 (2022)

    Article  Google Scholar 

  10. ZHOU, S., LIU, Y., JIANG, Z., and REN, Z. Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dynamics, 110(1), 153–175 (2022)

    Article  Google Scholar 

  11. CHONG, X., WU, Z., and LI, F. Vibration isolation properties of the nonlinear X-combined structure with a high-static and low-dynamic stiffness: theory and experiment. Mechanical Systems and Signal Processing, 179, 109352 (2022)

    Article  Google Scholar 

  12. LIU, C. and YU, K. Design and experimental study of a quasi-zero-stiffness vibration isolator incorporating transverse groove springs. Archives of Civil and Mechanical Engineering, 20(3), 67 (2020)

    Article  Google Scholar 

  13. QIU, Y., ZHU, Y., LUO, Z., GAO, Y., and LI, Y. The analysis and design of nonlinear vibration isolators under both displacement and force excitations. Archive of Applied Mechanics, 91(5), 2159–2178 (2021)

    Article  Google Scholar 

  14. WANG, K., ZHOU, J., CHANG, Y., OUYANG, H., XU, D., and YANG, Y. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dynamics, 101 (2), 755–773 (2020)

    Article  Google Scholar 

  15. SUN, Y., ZHOU, J., THOMPSON, D., YUAN, T., GONG, D., and YOU, T. Design, analysis and experimental validation of high static and low dynamic stiffness mounts based on target force curves. International Journal of Non-Linear Mechanics, 126, 103559 (2020)

    Article  Google Scholar 

  16. YANG, Z., WANG, Y., HUANG, Z., and RAO, Z. Characteristic analysis of a new high-static-low-dynamic stiffness vibration isolator based on the buckling circular plate. Journal of Low Frequency Noise Vibration and Active Control, 40(3), 1526–1539 (2021)

    Article  Google Scholar 

  17. LI, Z., CHEN, Q., GU, F., and BALL, A. Modeling a mechanical molecular spring isolator with high-static-low-dynamic-stiffness properties. Shock and Vibration, 2020, 8853936 (2020)

    Google Scholar 

  18. ZENG, R., YIN, S., WEN, G., and ZHOU, J. A non-smooth quasi-zero-stiffness isolator with displacement constraints. International Journal of Mechanical Sciences, 225, 107351 (2022)

    Article  Google Scholar 

  19. CELLA, G., SANNIBALE, V., DESALVO, R., MARKA, S., and TAKAMORI, A. Monolithic geometric anti-spring blades. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 540(2–3), 502–519 (2005)

    Article  Google Scholar 

  20. WANG, P. Y. and XU, Q. S. Design and modeling of constant-force mechanisms: a survey. Mechanism and Machine Theory, 119, 1–21 (2018)

    Article  Google Scholar 

  21. WANG, Z., HE, C., XU, Y., LI, D., LIANG, Z., DING, W., and KOU, L. Static and dynamic analysis of 6-dof quasi-zero-stiffness vibration isolation platform based on leaf spring structure. Mathematics, 10(8), 1342 (2022)

    Article  Google Scholar 

  22. YANG, T., ZHOU, S., FANG, S., QIN, W., and INMAN, D. J. Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications. Applied Physics Reviews, 8(3), 031317 (2021)

    Article  Google Scholar 

  23. WANG, M., HU, Y., SUN, Y., DING, J., PU, H., YUAN, S., ZHAO, J., PENG, Y., XIE, S., and LUO, J. An adjustable low-frequency vibration isolation stewart platform based on electromagnetic negative stiffness. International Journal of Mechanical Sciences, 181, 105714 (2020)

    Article  Google Scholar 

  24. YAN, L. and GONG, X. Experimental study of vibration isolation characteristics of a geometric anti-spring isolator. Applied Sciences-Basel, 7(7), 711 (2017)

    Article  Google Scholar 

  25. YAN, L., XUAN, S., and GONG, X. Shock isolation performance of a geometric anti-spring isolator. Journal of Sound and Vibration, 413, 120–143 (2018)

    Article  Google Scholar 

  26. HU, Z. and ZHENG, G. A combined dynamic analysis method for geometrically nonlinear vibration isolators with elastic rings. Mechanical Systems and Signal Processing, 76–77, 634–648 (2016)

    Article  Google Scholar 

  27. ZHANG, Q., GUO, D., and HU, G. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. Advanced Functional Materials, 31(33), 2101428 (2021)

    Article  Google Scholar 

  28. ZHOU, J., PAN, H., CAI, C., and XU, D. Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial. International Journal of Mechanics and Materials in Design, 17(2), 285–300 (2021)

    Article  Google Scholar 

  29. ARAKI, Y., KIMURA, K., ASAI, T., MASUI, T., OMORI, T., and KAINUMA, R. Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars. Journal of Sound and Vibration, 358, 74–83 (2015)

    Article  Google Scholar 

  30. LU, Z. Q., GU, D. H., DING, H., LACARBONARA, W., and CHEN, L. Q. A ring vibration isolator enhanced by shape memory pseudoelasticity. Applied Mathematical Modelling, 100, 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. SALVATORE, A., CARBONI, B., and LACARBONARA, W. Nonlinear dynamic response of an isolation system with superelastic hysteresis and negative stiffness. Nonlinear Dynamics, 107(2), 1765–1790 (2022)

    Article  Google Scholar 

  32. ZHANG, Y., LIU, Q., LEI, Y., CAO, J., and LIAO, W. H. Halbach high negative stiffness isolator: modeling and experiments. Mechanical Systems and Signal Processing, 188, 110014 (2023)

    Article  Google Scholar 

  33. YAN, G., WU, Z., WEI, X., WANG, S., ZOU, H., ZHAO, L., QI, W., and ZHANG, W. Nonlinear compensation method for quasi-zero stiffness vibration isolation. Journal of Sound and Vibration, 523, 116743 (2022)

    Article  Google Scholar 

  34. WU, W., CHEN, X., and SHAN, Y. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. Journal of Sound and Vibration, 333(13), 2958–2970 (2014)

    Article  Google Scholar 

  35. TU, L., NING, D., SUN, S., LI, W., HUANG, H., DONG, M., and DU, H. A novel negative stiffness magnetic spring design for vehicle seat suspension system. Mechatronics, 68, 102370 (2020)

    Article  Google Scholar 

  36. ZHANG, F., XU, M., SHAO, S., and XIE, S. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. Journal of Sound and Vibration, 476, 115322 (2020)

    Article  Google Scholar 

  37. MA, H., YAN, B., ZHANG, L., ZHENG, W., WANG, P., and WU, C. On the design of nonlinear damping with electromagnetic shunt damping. International Journal of Mechanical Sciences, 175, 105513 (2020)

    Article  Google Scholar 

  38. THANH DANH, L. and AHN, K. K. Experimental investigation of a vibration isolation system using negative stiffness structure. International Journal of Mechanical Sciences, 70, 99–112 (2013)

    Article  Google Scholar 

  39. LIU, Y., JI, W., DENG, E., WANG, X., and SONG, C. Dynamic characteristics of two degree-of-freedom quasi-zero stiffness vibration isolation system with nonlinear springs. Mechanics Based Design of Structures and Machines, 51(16), 3100–3118 (2023)

    Article  Google Scholar 

  40. ZHU, G., LIU, J., CAO, Q., CHENG, Y., LU, Z., and ZHU, Z. A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Science China-Technological Sciences, 63(3), 496–505 (2020)

    Article  Google Scholar 

  41. SUMAN, S., BALAJI, P. S., SELVAKUMAR, K., and KUMARASWAMIDHAS, L. A. Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism. Journal of Vibration Engineering & Technologies, 9(5), 957–966 (2021)

    Article  Google Scholar 

  42. YUAN, S., SUN, Y., WANG, M., DING, J., ZHAO, J., HUANG, Y., PENG, Y., XIE, S., LUO, J., PU, H., LIU, F., BAI, L., and YANG, X. D. Tunable negative stiffness spring using maxwell normal stress. International Journal of Mechanical Sciences, 193, 106127 (2021)

    Article  Google Scholar 

  43. QI, W. H., YAN, G., LU, J. J., YAN, H., SHI, J. W., WEI, X. S., WANG, S., and ZHANG, W. M. Magnetically modulated sliding structure for low frequency vibration isolation. Journal of Sound and Vibration, 526, 116819 (2022)

    Article  Google Scholar 

  44. CHEN, R., LI, X., TIAN, J., YANG, Z., and XU, J. On the displacement transferability of variable stiffness multi-directional low frequency vibration isolation joint. Applied Mathematical Modelling, 112, 690–707 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. HUANG, X., LIU, X., SUN, J., ZHANG, Z., and HUA, H. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. Journal of Sound and Vibration, 333(4), 1132–1148 (2014)

    Article  Google Scholar 

  46. OYELADE, A. O. Vibration isolation using a bar and an Euler beam as negative stiffness for vehicle seat comfort. Advances in Mechanical Engineering, 11(7) (2019) https://doi.org/10.1177/1687814019860983

    Google Scholar 

  47. WANG, S. and WANG, Z. Curved surface-based vibration isolation mechanism with designable stiffness: modeling, simulation, and applications. Mechanical Systems and Signal Processing, 181, 109489 (2022)

    Article  Google Scholar 

  48. WANG, X., ZHOU, J., XU, D., OUYANG, H., and DUAN, Y. Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 87(1), 633–646 (2017)

    Article  Google Scholar 

  49. YE, K., JI, J. C., and BROWN, T. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mechanical Systems and Signal Processing, 149, 107340 (2021)

    Article  Google Scholar 

  50. ZHANG, Y., WEI, G., WEN, H., JIN, D., and HU, H. Design and analysis of a vibration isolation system with cam-roller-spring-rod mechanism. Journal of Vibration and Control, 28(13–14), 1781–1791 (2022)

    Article  MathSciNet  Google Scholar 

  51. ZHOU, J., WANG, X., XU, D., and BISHOP, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. Journal of Sound and Vibration, 346, 53–69 (2015)

    Article  Google Scholar 

  52. ZHENG, Y., ZHANG, X., LUO, Y., YAN, B., and MA, C. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. Journal of Sound and Vibration, 360, 31–52 (2016)

    Article  Google Scholar 

  53. DONG, G., ZHANG, X., XIE, S., YAN, B., and LUO, Y. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mechanical Systems and Signal Processing, 86, 188–203 (2017)

    Article  Google Scholar 

  54. ZHAO, F., CAO, S., LUO, Q., and JI, J. Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: theory and experiment. Journal of Vibration and Control, 29, 2049–2063 (2023)

    Article  Google Scholar 

  55. YU, C., FU, Q., ZHANG, J., and ZHANG, N. The vibration isolation characteristics of torsion bar spring with negative stiffness structure. Mechanical Systems and Signal Processing, 180, 109378 (2022)

    Article  Google Scholar 

  56. LIU, C. and YU, K. A high-static-low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dynamics, 94(3), 1549–1567 (2018)

    Article  MathSciNet  Google Scholar 

  57. ZHOU, X., ZHAO, D., SUN, X., YANG, X., ZHANG, J., NI, T., and TANG, K. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity. Nonlinear Dynamics, 108(3), 1903–1930 (2022)

    Article  Google Scholar 

  58. JIN, G. X., WANG, Z. H., and YANG, T. Z. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Applied Mathematics and Mechanics (English Edition), 43(6), 813–824 (2022) https://doi.org/10.1007/s10483-022-2852-5

    Article  MathSciNet  MATH  Google Scholar 

  59. DAI, H. H., CAO, X. Y., JING, X. J., WANG, X., and YUE, X. K. Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mechanical Systems and Signal Processing, 142, 106785 (2020)

    Article  Google Scholar 

  60. NIU, M. and CHEN, L. Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mechanical Systems and Signal Processing, 179, 109348 (2022)

    Article  Google Scholar 

  61. YAN, G., WANG, S., ZOU, H., ZHAO, L., GAO, Q., and ZHANG, W. Bio-inspired polygonal skeleton structure for vibration isolation: design, modelling, and experiment. Science China-Technological Sciences, 63(12), 2617–2630 (2020)

    Article  Google Scholar 

  62. YAN, G., QI, W., SHI, J., YAN, H., ZOU, H., ZHAO, L., WU, Z., FANG, X., LI, X., and ZHANG, W. Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. Journal of Sound and Vibration, 525, 116799 (2022)

    Article  Google Scholar 

  63. DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems and Signal Processing, 145, 106967 (2020)

    Article  Google Scholar 

  64. YAN, G., ZOU, H. X., WANG, S., ZHAO, L. C., WU, Z. Y., and ZHANG, W. M. Bio-inspired vibration isolation: methodology and design. Applied Mechanics Reviews, 73(2), 020801 (2021)

    Article  Google Scholar 

  65. SHI, X., CHEN, T., ZHANG, J., SU, B., CONG, Q., and TIAN, W. A review of bioinspired vibration control technology. Applied Sciences-Basel, 11(1), 10584 (2021)

    Article  Google Scholar 

  66. NAKAMURA, S., MUKAI, H., and TOKUDA, M. A trapdoor spider, Latouchia typica (Araneae: Halonoproctidae), uses vibrational cues as a trigger for predatory behavior. Invertebrate Biology, 141(4), e12388 (2022)

    Article  Google Scholar 

  67. LANDOLFA, M. A. and BARTH, F. G. Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 179(4), 493–508 (1996)

    Google Scholar 

  68. LONG, S. M., LEONARD, A., CAREY, A., and JAKOB, E. M. Vibration as an effective stimulus for aversive conditioning in jumping spiders. Journal of Arachnology, 43(1), 111–114 (2015)

    Article  Google Scholar 

  69. QIU, J., LANG, J. H., and SLOCUM, A. H. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13(2), 137–146 (2004)

    Article  Google Scholar 

  70. VANGBO, M. An analytical analysis of a compressed bistable buckled beam. Sensors and Actuators A: Physical, 69(3), 212–216 (1998)

    Article  Google Scholar 

  71. WANG, Y. and JING, X. Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mechanical Systems and Signal Processing, 125, 142–169 (2019)

    Article  Google Scholar 

  72. YAN, G., ZOU, H., WANG, S., ZHAO, L., WU, Z., and ZHANG, W. Bio-inspired toe-like structure for low-frequency vibration isolation. Mechanical Systems and Signal Processing, 162, 108010 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Yangtze River Delta HIT Robot Technology Research Institute (No. HIT-CXY-CMP2-VSEA-21-01) and the Open Project Program (No. WDZL-2021-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobiao Shan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, G., Hou, S., Zhang, X. et al. A bio-inspired spider-like structure isolator for low-frequency vibration. Appl. Math. Mech.-Engl. Ed. 44, 1263–1286 (2023). https://doi.org/10.1007/s10483-023-3020-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3020-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation