Skip to main content
Log in

Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites. The analytic solution of the piezoelectric quasicrystal (QC) microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study. The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory, electro-elastic interface theory, and eigenvalue method. A comparison between the existing results and the finite-element simulation validates the present approach. Numerical examples reveal the effects of temperature variation, nonlocal parameters, surface properties, elastic coefficients, and phason coefficients on the phonon, phason, and electric fields. The results indicate that the QC microsphere enhances the mechanical properties of the matrix. The results are useful for the design and understanding of the characterization of QCs in micro-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951–1953 (1984)

    Article  Google Scholar 

  2. LEVINE, D. and STEINHARDT, P. J. Quasicrystals: a new class of ordered structures. Physical Review Letters, 53, 2477–2480 (1984)

    Article  Google Scholar 

  3. BAK, P. Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. Physical Review B, 32(9), 5764–5772 (1985)

    Article  MathSciNet  Google Scholar 

  4. LEVINE, D., LUBENSKY, T. C., OSTLUND, S., RAMASWAMY, S., STEINHARDT, P. J., and TONER, J. Elasticity and dislocation in pentagonal and icosahedral quasicrystal. Physical Review Letters, 54, 1520–1523 (1985)

    Article  Google Scholar 

  5. LOUZGUINE-LUZGIN, D. V. and INOUE, A. Formation and properties of quasicrystals. Annual Review of Materials Research, 38(1), 403–423 (2008)

    Article  Google Scholar 

  6. DUBOIS, J. M. New prospects from potential applications of quasicrystalline materials. Materials Science and Engineering: A, 294–296, 4–9 (2000)

    Article  Google Scholar 

  7. CHENG, L. I., ZHU, C., LIM, C. W., and SHUANG, L. I. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821–1840 (2022) https://doi.org/10.1007/s10483-022-2917-7

    Article  MathSciNet  MATH  Google Scholar 

  8. ZHANG, D. X., SHI, J. H., WU, B. D., ZHU, R., ZHOU, J. Q., GUO, Y. Y., AN, C. W., and WANG, J. Y. Using microfluidic technology to prepare octogen high-energy microspheres containing copper-aluminum composite particles with enhanced combustion performance. Materials and Design, 229, 111874 (2023)

    Article  Google Scholar 

  9. XU, D. K., LIU, L., XU, Y. B., and HAN, E. H. The strengthening effect of icosahedral phase on as-extruded Mg-Li alloys. Scripta Materialia, 57(3), 285–288 (2007)

    Article  Google Scholar 

  10. TANG, F., ANDERSON, I. E., GNAUPEL-HEROLD, T., and PRASK, H. Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms. Materials Science and Engineering: A, 383(2), 362–373 (2004)

    Article  Google Scholar 

  11. KALOSHKIN, S. D., TCHERDYNTSEV, V. V., LAPTEV, A. I., STEPASHKIN, A. A., AFONINA, E. A., and POMADCHIK, A. L. Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites. Journal of Materials Science, 39(16–17), 5399–5402 (2004)

    Article  Google Scholar 

  12. TEGHIL, R., BONIS, A. D., GALASSO, A., SANTAGATA, A., VILLANI, P., and SORDELET, D. J. Role and importance of nanoparticles in femtosecond pulsed laser ablation deposition of Al-Cu-Fe quasicrystal. Chemical Physics Letters, 438(1–3), 85–88 (2007)

    Article  Google Scholar 

  13. SARKAR, S., GUIBAL, E., QUIGNARD, F., and SENGUPTA, A. K. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research, 14(2), 1–24 (2012)

    Article  Google Scholar 

  14. PASHKOV, O. A. Influence of polymer coatings on the mechanical properties of steel samples in tensile and bending tests. Turkish Journal of Computer and Mathematics, 12(5), 542–548 (2021)

    Google Scholar 

  15. MCCAULEY, T., BAUER, M., YOHO, C., LI, C., SOLOMON, V., and MORO, M. Separation of quasicrystalline nanoparticles from an amorphous matrix. Microscopy and Microanalysis, 18(S2), 1934–1935 (2012)

    Article  Google Scholar 

  16. KIDO, O., KURUMADA, M., KAMITSUJI, K., TANIGAKI, T., SATO, T., KIMURA, Y., SUZUKI, H., SAITO, Y., and KAITO, C. Synthesis of Al-Cr decagonal quasicrystal nanopar-ticles and their temperature of phase transformation to stable crystal phase. Physica E, 31(2), 169–173 (2006)

    Article  Google Scholar 

  17. UTKIN, Y. A., OREKHOV, A. A., and HEIN, T. Z. Tribological properties of polymer composite with impregnated quasicrystal nanoparticles. International Journal of Mechanical Sciences, 15, 189–195 (2021)

    Article  Google Scholar 

  18. INOUE, A. and TAKEUCHI, A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Materials Science and Engineering: A, 375–377(1–2), 16–30 (2004)

    Article  Google Scholar 

  19. FOURNEE, V., SHARMA, H. R., SHIMODA, M., TSAI, A. P., UNAL, B., ROSS, A. R., LOGRASSO, T. A., and THIEL, P. A. Quantum size effects in metal thin films grown on quasicrys-talline substrates. Physical Review Letters, 95(15), 155504 (2005)

    Article  Google Scholar 

  20. WANG, Z., ZHAO, W., QIN, C., CUI, Y., FAN, S., and JIA, J. Direct preparation of nano-quasicrystals via a water-cooled wedge-shaped copper mould. Journal of Nanomaterials, 2012, 708240 (2012)

    Google Scholar 

  21. INOUE, A., KONG, F. L., ZHU, S. L., LIU, C. T., and AL-MARZOUKI, F. Development and applications of highly functional Al-based materials by use of metastable phases. Materials Research, 18(6), 1414–1425 (2015)

    Article  Google Scholar 

  22. EBRAHIMI, F. and BARATI, M. R. A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arabian Journal for Science and Engineering, 41(5), 1679–1690 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. ERINGEN, A. C. Nonlocal Continuum Field Theories, Spring-Verlag, New York, 134–162 (2002)

    MATH  Google Scholar 

  24. SLADEK, J., SLADEK, V., HRCEK, S., and PAN, E. The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates. Composite Structures, 172, 119–129 (2017)

    Article  Google Scholar 

  25. LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. GUO, J. H., CHEN, J. Y., and PAN, E. Static deformation of anisotropic layered magnetoelec-troelastic plates based on modified couple-stress theory. Composites Part B, 107, 84–96 (2016)

    Article  Google Scholar 

  27. ARASH, B. and WANG, Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 51(1), 303–313 (2014)

    Article  Google Scholar 

  28. LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects. Applied Mathematical Modelling, 87, 42–54 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. ZHANG, L., GUO, J., and XING, Y. Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory. Acta Mechanica Solida Sinica, 34(2), 237–251 (2021)

    Article  Google Scholar 

  30. TIWARI, K., BIWAS, K., PALLIWAL, M., MAJUMDAR, B., and FECHT, H. J. Melting behaviour of tri-phasic Bi44In32Sn23 alloy nanoparticle embedded in icosahedral quasicrystalline matrix. Journal of Alloys and Compounds, 834(5), 155160 (2020)

    Article  Google Scholar 

  31. LI, X. Y., WANG, T., ZHENG, R. F., and KANG, G. Z. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. ZAMM — Journal of Applied Mathematics and Mechanics, 95, 457–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. YU, Y. J., TIAN, X. G., and XIONG, Q. L. Size-dependent thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics A/Solids, 60, 238–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. LI, X. Y. Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional hexagonal quasicrystal under thermal loading. Proceedings of the Royal Society of London Series A, 469, 0023 (2013)

    Google Scholar 

  34. ALTENBACH, H., EREMEYEV, V. A., and MOROZOV, N. F. On the influence of residual surface stresses on the properties of structures at the nanoscale. Surface Effects in Solid Mechanics, Springer, New York, 64–72 (2013)

    Google Scholar 

  35. MALEKZADEH, P. and SHOJAEE, M. Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Composites Part B, 52, 84–92 (2013)

    Article  Google Scholar 

  36. HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mechanica, 231(6), 2351–2368 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. ROOSTAI, H. and HAGHPANAHI, M. Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effects. Acta Mechanica Solida Sinica, 27(2), 202–209 (2014)

    Article  MATH  Google Scholar 

  38. HOSSEINI-HASHEMI, S., FAKHER, M., and NAZEMNEZHAD, R. Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko. Journal of Solid Mechanics, 5(3), 290–304 (2013)

    Google Scholar 

  39. CLAY, M. Galvanic Synthesis of Novel Porous Metal Nanostructures Using Aluminum Nanoparticle Templates and Their Application as Electrochemical Biosensors, University of Massachusetts Lowell, 69–83 (2012)

  40. WAKSMANSKI, N. and PAN, E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates. Journal of Vibration and Acoustics, 139(2), 1–16 (2017)

    Article  Google Scholar 

  41. HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Three-dimensional static analysis of multilayered one-dimensional orthorhombic quasicrystal spherical shells with the piezoelectric effect. Physics Letters A, 383(29), 125902 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. HUANG, M. J., FANG, X. Q., LIU, J. X., FENG, W. J., and ZHAO, Y. M. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles. Smart Materials and Structures, 24(1), 15005–15013 (2015)

    Article  Google Scholar 

  43. GOODIER, J. N. Concentration of stress around spherical and cylindrical inclusion and flaws. Journal of Applied Mechanics, 55, 39–44 (1933)

    Article  Google Scholar 

  44. CHEN, W. Q., CAI, J. B., and YE, G. R. Exact solutions of cross-ply laminates with bonding imperfections. AIAA Journal, 41(11), 2244–2250 (2003)

    Article  Google Scholar 

  45. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. XIAO, J. H., XU, Y. L., and ZHANG, F. C. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mechanica, 222, 59–67 (2011)

    Article  MATH  Google Scholar 

  47. FANG, X. Q., HUANG, M. J., LIU, J. X., and NIE, G. Q. Electromechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under antiplane shear. Journal of Applied Physics, 115, 064306 (2014)

    Article  Google Scholar 

  48. GU, G. Q., WEI, E. B., POON, Y. M., and SHIN, F. G. Effective properties of spherically anisotropic piezoelectric composites. Physical Review B, 76, 064203 (2007)

    Article  Google Scholar 

  49. HUANG, Y. Z., CHEN, J., ZHAO, M., and FENG, M. L. Responses of multilayered two-dimensional decagonal quasicrystal circular nanoplates with initial stresses and nanoscale interactions. European Journal of Mechanics A/Solids, 87, 104216 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Three-dimensional static analysis of multilayered one-dimensional orthorhombic quasicrystal spherical shells with the piezoelectric effect. Physics Letters A, 383(29), 125902 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. ZHU, M., YANG, G. C., CHENG, S. L., YAO, L. J., and ZHOU, Y. H. Phase transition and mechanical properties of Al-based composites reinforced by Al72Ni12Co16 decagonal quasicrystalline particles (in Chinese). Rare Metal Materials and Engineering, 39(009), 1604–1608 (2010)

    Google Scholar 

  52. CHENG, S. L., YANG, G. C., ZHU, M., WANG, J. C., and ZHOU, Y. H. Mechanical properties and fracture mechanisms of aluminum matrix composites reinforced by Al9 (Co, Ni)2 inter-metallics. Transactions of Nonferrous Metals Society of China, 20(4), 572–576 (2010)

    Article  Google Scholar 

  53. HOU, Y., ZHANG, Z., ZHANG, J., LIU, Z., and SONG, Z. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate. Review of Entific Instruments, 86(5), 241–248 (2015)

    Google Scholar 

  54. CHENG, L., YAO, L., CHEN, W., and SHUANG, L. Comments on nonlocal effects in nano-cantilever beams. International Journal of Engineering Science, 87, 47–57 (2015)

    Article  Google Scholar 

  55. CHENG, L., SHUANG, L., YAO, L., and ZHU, Z. Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models. Applied Mathematical Modelling, 39(15), 4570–4585 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. LI, Z., GUO, J., and XING, Y. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132–133, 278–302 (2018)

    Google Scholar 

  57. LI, C., LAI, S. K., and YANG, X. On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Applied Mathematical Modelling, 69, 127–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. RASOULIGANDOMANI, M. Calibration of small scale parameter in Eringen’s nonlocal shell theory for multi-walled carbon nanocone by molecular mechanics approach. The 5th International Conference on Nanostructures (ICNS5), Kish Island (2014)

  59. HUANG, Y. and GAO, L. Nonlocal effects on surface enhanced raman scattering from bimetallic coated nanoparticles. Progress in Electromagnetics Research, 133, 591–605 (2013)

    Article  Google Scholar 

  60. SINGH, A. and TSAI, A. P. The nature of lead-quasicrystal interfaces and its effect on the melting behaviour of lead nanoparticles embedded in quasicrystalline matrices. Materials Science and Engineering A, 294, 160–163 (2000)

    Article  Google Scholar 

  61. WANG, B. H., YANG, G. C., ZHU, M., and CHENG, S. L. Microstructure and mechanical properties of Al-11%Mg-matrix composites reinforced by Al72Ni12Co16 decagonal quasicrystal particles (in Chinese). Zhuzao/Foundry, 57(2), 140–143 (2008)

    Google Scholar 

  62. IWASAKI, Y., KITAHARA, K., and KIMURA, K. Band engineering in Al-TM (TM=Rh, Ir) quasicrystalline approximants via alloying and enhancement of thermoelectric properties. Journal of Alloys and Compounds, 851(1), 156904 (2021)

    Article  Google Scholar 

  63. TAKAGIWA, Y., KAMIMURA, T., HOSOI, S., OKADA, J. T., and KIMURA, K. Thermoelectric properties of Al-Pd-Re quasicrystal sintered by spark plasma sintering (SPS): effect of improvement of microstructure. International Journal for Structural Physical and Chemical Aspects of Crystalline Materials, 224(1–2), 79–83 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ling Chuang Research Project of China National Nuclear Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaolin Feng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Project supported by the National Natural Science Foundation of China (Nos. U2067220 and 82000980)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zheng, W., Chen, X. et al. Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix. Appl. Math. Mech.-Engl. Ed. 44, 1331–1350 (2023). https://doi.org/10.1007/s10483-023-3018-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3018-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation