Skip to main content
Log in

Anti-plane pull-out of a rigid line inclusion from an elastic medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The transient and static anti-plane problem of a rigid line inclusion pulled out from an elastic medium is studied. The singular integral equation method is used to solve the stress field. Under the static load, the stress intensity factor (SIF) at the inclusion tips increases with the medium length. The problem becomes equivalent to an inclusion in a medium with an infinite length when the length of the medium is 3.5 times longer than that of the inclusion. However, under the transient load, the maximum value of the SIF occurs when the medium length is about two times the inclusion length. Besides, the relation between the pull-out force and the anti-plane displacement is given. The conclusions are useful in guiding the design of fiber reinforced composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. MANDELL, J. F., CHEN, J. H., and MCGARRY, F. J. A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials. International Journal of Adhesion & Adhesives, 1(1), 40–44 (1980)

    Article  Google Scholar 

  2. DETASSIS, M., FRYDMAN, E., VRIELING, D., ZHOU, X. F., WAGNER, H. D., and NAIRN, J. A. Interface toughness in fibre composites by the fragmentation test. Composites Part A: Applied Science and Manufacturing, 27(9), 769–773 (1996)

    Article  Google Scholar 

  3. LACROIX, T., TILMANS, B., KEUNINGS, R., DESAEGER, M., and VERPOEST, I. Modeling of critical fiber length and interfacial debonding in the fragmentation testing of polymer composites. Composites Science and Technology, 43(4), 379–387 (1992)

    Article  Google Scholar 

  4. MILLER, B., MURI, P., and REBENFELD, L. A microbond method for determination of the shear-strength of a fiber-resin interface. Composites Science and Technology, 28(1), 17–32 (1987)

    Article  Google Scholar 

  5. PIGGOTT, M. R., CHUA, P. S., and ANDISON, D. The interface between glass and carbon-fibers and thermosetting polymers. Polymer Composites, 6(4), 242–248 (1985)

    Article  Google Scholar 

  6. ALBERTI, M. G., ENFEDAQUE, A., GALVEZ, J. C., and FERRERAS, A. Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Construction and Building Materials, 112, 607–622 (2016)

    Article  Google Scholar 

  7. VRIJDAGHS, R., DI PRISCO, M., and VANDEWALLE, L. Short-term and creep pull-out behavior of polypropylene macrofibers at varying embedded lengths and angles from a concrete matrix. Construction and Building Materials, 147, 858–864 (2017)

    Article  Google Scholar 

  8. BOSHOFF, W. P., MECHTCHERINE, V., and VAN ZIJL, G. Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 2: the rate effects on fibre pull-out tests. Cement and Concrete Research, 39(9), 787–797 (2009)

    Article  Google Scholar 

  9. BEGLARIGALE, A. and YAZICI, H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Construction and Building Materials, 75, 255–265 (2015)

    Article  Google Scholar 

  10. WON, J. P., LEE, J. H., and LEE, S. J. Predicting pull-out behaviour based on the bond mechanism of arch-type steel fibre in cementitious composite. Composite Structures, 134, 633–644 (2015)

    Article  Google Scholar 

  11. HAO, Y. F. and HAO, H. Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix. Construction and Building Materials, 139, 34–44 (2017)

    Article  Google Scholar 

  12. QIU, Y. and SCHWARTZ, P. Micromechanical behavior of Kevlar-149/S-glass hybrid seven-fiber microcomposites: I. tensile strength of the hybrid composite. Composites Science and Technology, 47(3), 289–301 (1993)

    Article  Google Scholar 

  13. HAMPE, A. and MAROTZKE, C. Experimental results of a pull-out test performed with single- and multi-fiber samples. Journal of Adhesion, 78(2), 167–187 (2002)

    Article  Google Scholar 

  14. FENG, L., KUMBHANI, M., KIM, Y. K., and RICE, J. M. Multi-fiber pull-out test. Journal of Advanced Materials, 42(1), 55–64 (2010)

    Google Scholar 

  15. STANG, H. and SHAH, S. P. Failure of fiber-reinforced composites by pull-out fracture. Journal of Materials Science, 21(3), 953–957 (1986)

    Article  Google Scholar 

  16. NAAMAN, A. E. Fiber pullout and bond slip. 1: analytical study. Journal of Structural Engineering-ASCE, 117(9), 2769–2790 (1991)

    Article  Google Scholar 

  17. LEE, Y., KANG, S. T., and KIM, J. K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Construction and Building Materials, 24(10), 2030–2041 (2010)

    Article  Google Scholar 

  18. LIU, H. Y., QIN, Q. H., and MAI, Y. W. Theoretical model of piezoelectric fibre pull-out. International Journal of Solids and Structures, 40(20), 5511–5519 (2003)

    Article  MATH  Google Scholar 

  19. FRIKHA, M., NOURI, H., GUESSASMA, S., ROGER, F., and BRADAI, C. Interfacial behaviour from pull-out tests of steel and aluminium fibres in unsaturated polyester matrix. Journal of Materials Science, 52(24), 13829–13840 (2017)

    Article  Google Scholar 

  20. ESMAEILI, J., ANDALIBI, K., GENCEL, O., MALEKI, F. K., and MALEKI, V. A. Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Construction and Building Materials, 271, (2021)

  21. WU, K., XU, Y., and CHENG, X. H. Simulation and analysis of single fiber pull-out tests through ANSYS and VC++. International Journal of Advanced Manufacturing Technology, 96(5–8), 1591–1599 (2018)

    Article  Google Scholar 

  22. LIU, Y. J., NISHIMURA, N., OTANI, Y., TAKAHASHI, T., CHEN, X. L., and MUNAKATA, H. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. Journal of Applied Mechanics, 72(1), 115–128 (2005)

    Article  MATH  Google Scholar 

  23. BALLARINI, R. A rigid line inclusion at a bimaterial interface. Engineering Fracture Mechanics, 37(1), 1–5 (1990)

    Article  Google Scholar 

  24. KOITER, W. T. On the diffusion load from a stiffener into a sheet. Quarterly Journal of Mechanics & Applied Mathematics, 8, 164–178 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. LUO, J. C. and GAO, C. F. Faber series method for plane problems of an arbitrarily shaped inclusion. Acta Mechanica, 208(3–4), 133–145 (2009)

    Article  MATH  Google Scholar 

  26. YANG, B., CHEN, W. Q., and DING, H. J. Several three-dimensional solutions for transversely isotropic functionally graded material plate welded with circular inclusion. Applied Mathematics and Mechanics (English Edition), 37(6), 683–694 (2016) https://doi.org/10.1007/s10483-016-2086-6

    Article  MathSciNet  MATH  Google Scholar 

  27. JOBIN, T. M., KHADERI, S. N., and RAMJI, M. Interaction of a rigid line inclusion with various discontinuities using experimental and numerical techniques. Theoretical and Applied Fracture Mechanics, 121, 103482 (2022)

    Article  Google Scholar 

  28. LIU, Y. W. and FANG, Q. H. Plane elastic problem on rigid lines along circular inclusion. Applied Mathematics and Mechanics (English Edition), 26(12), 1585–1594 (2005) https://doi.org/10.1007/s10483-006-1207-z

    Article  MATH  Google Scholar 

  29. WANG, B. L. and LI, J. E. Nonlocal elastic theory for a medium with one or more rigid inclusions — Mode III deformation. European Journal of Mechanics-A/Solids, 93, 104532 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. WANG, B. L. and LI, J. E. A rigid line inclusion in a nonlocal elastic medium — Mode I deformation. Engineering Fracture Mechanics, 267, 108433 (2022)

    Article  Google Scholar 

  31. WANG, B. L. and LI, J. E. Enhanced piezoelectric coupling by a line inclusion in piezoelectric medium associated with nonlocal theory of elasticity. Theoretical and Applied Fracture Mechanics, 119, 103301 (2022)

    Article  Google Scholar 

  32. ERDOGAN, F. and WU, B. H. Crack problems in FGM layers under thermal stresses. Journal of Thermal Stresses, 7(3), 437–445 (1996)

    Google Scholar 

  33. STEHFEST, H. Numerical inversion of Laplace transforms. Communications of the ACM, 13(10), 47–49 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Wang.

Additional information

Citation: WANG, Y. S., WANG, B. L., CUI, Y. J., and WANG, K. F. Anti-plane pull-out of a rigid line inclusion from an elastic medium. Applied Mathematics and Mechanics (English Edition), 44(5), 809–822 (2023) https://doi.org/10.1007/s10483-023-2980-6

Project supported by the Guangdong Basic and Applied Basic Research Foundation of China (Nos. 2022A1515010801 and 2023A1515012641) and the Shenzhen Science and Technology Program of China (Nos. JCYJ20220818102409020 and GXWD20220811165158003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, B., Cui, Y. et al. Anti-plane pull-out of a rigid line inclusion from an elastic medium. Appl. Math. Mech.-Engl. Ed. 44, 809–822 (2023). https://doi.org/10.1007/s10483-023-2980-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2980-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation