Skip to main content
Log in

Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature. The parallel liquid-filled pipe (PLFP) system is also widely used in engineering, and its structure is more complex than that of a single pipe. However, there are few reports about the dynamic characteristics of the PLFPs. Therefore, this paper proposes improved frequency modeling and solution for the PLFPs, involving the logical alignment principle and coupled matrix processing. The established model incorporates both the fluid-structure interaction (FSI) and the structural coupling of the PLFPs. The validity of the established model is verified by modal experiments. The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed. This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAO, P. X., ZHAI, J. Y., YAN, Y. Y., HAN, Q. K., QU, F. Z., and CHEN, X. H. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft. Aerospace Science and Technology, 49, 144–153 (2016)

    Article  Google Scholar 

  2. GAO, Y. and SUN, W. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload. Frontiers of Mechanical Engineering, 14(3), 358–368 (2019)

    Article  Google Scholar 

  3. GAO, P. X., YU, T., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chinese Journal of Aeronautics, 34(4), 83–114 (2021)

    Article  Google Scholar 

  4. WADHAM-GAGNON, M., PAÏDOUSSIS, M. P., and SEMLER, C. Dynamics of cantilevered pipes conveying fluid, part 1: nonlinear equations of three-dimensional motion. Journal of Fluids and Structures, 23, 545–567 (2007)

    Article  Google Scholar 

  5. PAÏDOUSSIS, M. P., SEMLER, C., WADHAM-GAGNON, M., and SAAID, S. Dynamics of cantilevered pipes conveying fluid, part 2: dynamics of the system with intermediate spring support. Journal of Fluids and Structures, 23, 569–587 (2007)

    Article  Google Scholar 

  6. WANG, Y. J., ZHANG, Q. C., WANG, W., and YANG, T. Z. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition), 40(8), 1119–1134 (2019) https://doi.org/10.1007/s10483-019-2511-6

    Article  MathSciNet  Google Scholar 

  7. ZHAO, D. M., LIU, J. L., and WU, C. Q. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading. Applied Mathematics and Mechanics (English Edition), 36(8), 1017–1032 (2015) https://doi.org/10.1007/s10483-015-1960-7

    Article  MathSciNet  MATH  Google Scholar 

  8. DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675–688 (2019)

    Article  Google Scholar 

  9. TAN, X. and DING, H. Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluid. Journal of Sound and Vibration, 485, 115594 (2020)

    Article  Google Scholar 

  10. DING, H., ZHU, M. H., and CHEN, L. Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dynamics, 485, 115594 (2020)

    Google Scholar 

  11. TAN, X., DING, H., and CHEN, L. Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. Journal of Sound and Vibration, 455, 241–255 (2019)

    Article  Google Scholar 

  12. NI, Q., WANG, Y. K., TAN, M., LUO, Y. Y., YAN, H., and WANG, L. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 81, 893–906 (2015)

    Article  Google Scholar 

  13. WANG, Y. K., WANG, L., NI, Q., DAI, H. L., YAN, H., and LUO, Y. Y. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 93, 505–524 (2018)

    Article  Google Scholar 

  14. ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42(5), 703–720 (2021) https://doi.org/10.1007/s10483-021-2729-6

    Article  MathSciNet  Google Scholar 

  15. LIANG, F., YANG, X. D., QIAN, Y. J., and ZHANG, W. Transverse free vibration and stability analysis of spinning pipes conveying fluid. International Journal of Mechanical Sciences, 137, 195–204 (2018)

    Article  Google Scholar 

  16. LIANG, F., GAO, A., LI, X. F., and ZHU, W. D. Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity. Applied Mathematical Modelling, 95, 320–338 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. LIANG, F., GAO, A., and YANG, X. D. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans. Applied Mathematical Modelling, 83, 454–469 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. TANG, Y., XU, J. Y., and YANG, T. Z. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43(4), 479–496 (2022) https://doi.org/10.1007/s10483-022-2839-6

    Article  MathSciNet  Google Scholar 

  19. YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937–1944 (2019)

    Article  Google Scholar 

  20. SEMLER, C. and PAÏDOUSSIS, M. P. Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. Journal of Fluids and Structures, 10, 787–825 (1996)

    Article  Google Scholar 

  21. PAÏDOUSSIS, M. P. and LI, G. X. Pipes conveying fluid: a model dynamical problem. Journal of Fluids and Structures, 7, 137–204 (1993)

    Article  Google Scholar 

  22. ZHANG, Y. F., YAO, M. H., ZHANG, W., and WEN, B. C. Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerospace Science and Technology, 68, 441–453 (2017)

    Article  Google Scholar 

  23. ZHAI, H. B., WU, Z. Y., LIU, Y. S., and YUE, Z. F. Dynamic response of pipeline conveying fluid to random excitation. Nuclear Engineering and Design, 241, 2744–2749 (2011)

    Article  Google Scholar 

  24. CHAI, Q. D., ZENG, J., MA, H., LI, K., and HAN, Q. K. A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps. Chinese Journal of Aeronautics, 33(12), 3253–3265 (2020)

    Article  Google Scholar 

  25. ZANGANEH, R., AHMADI, A., and KERAMAT, A. Fluid-structure interaction with viscoelastic supports during waterhammer in a pipeline. Journal of Fluids and Structures, 54, 215–234 (2015)

    Article  Google Scholar 

  26. GAO, P. X., QU, H. Q., ZHANG, Y. L., YU, T., and ZHAI, J. Y. Experimental and numerical vibration analysis of hydraulic pipeline system under multiexcitations. Shock and Vibration, 2020, 3598374 (2020)

    Google Scholar 

  27. LI, Q. S., YANG, K., ZHANG, L. X., and ZHANG, N. Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method. International Journal of Mechanical Sciences, 44, 2067–2087 (2002)

    Article  MATH  Google Scholar 

  28. ZHANG, L. X., TIJSSELING, A. S., and VARDY, A. E. FSI analysis of liquid-filled pipes. Journal of Sound and Vibration, 224(1) 69–99 (1999)

    Article  Google Scholar 

  29. LIU, G. M. and LI, Y. H. Vibration analysis of liquid-filled pipelines with elastic constraints. Journal of Sound and Vibration, 330, 3166–3181 (2011)

    Article  Google Scholar 

  30. LI, S. J., LIU, G. M., and KONG, W. T. Vibration analysis of pipes conveying fluid by transfer matrix method. Nuclear Engineering and Design, 266, 78–88 (2014)

    Article  Google Scholar 

  31. LESMEZ, M. W., WIGGERT, D. C., and HATFIELD, F. J. Modal analysis of vibrations in liquid-filled piping systems. Journal of Fluids Engineering-Transactions of the ASME, 112(3), 311–318 (1990)

    Article  Google Scholar 

  32. GUO, X. M., CAO, Y. M., MA, H., XIAO, C. L., and WEN, B. C. Dynamic analysis of an L-shaped liquid-filled pipe with interval uncertainty. International Journal of Mechanical Sciences, 217, 107040 (2022)

    Article  Google Scholar 

  33. XU, Y. Z., JOHNSTON, D. N., JIAO, Z. X., and PLUMMER, A. R. Frequency modelling and solution of fluid-structure interaction in complex pipelines. Journal of Sound and Vibration, 33, 2800–2822 (2014)

    Article  Google Scholar 

  34. KERAMAT, A., KARNEY, B., GHIDAOUI, M. S., and WANG, X. Transient-based leak detection in the frequency domain considering fluid-structure interaction and viscoelasticity. Mechanical Systems and Signal Processing, 153, 107500 (2021)

    Article  Google Scholar 

  35. ALIABADI, H. K., AHMADI, A., and KERAMAT, A. Frequency response of water hammer with fluid-structure interaction in a viscoelastic pipe. Mechanical Systems and Signal Processing, 114, 106848 (2020)

    Article  Google Scholar 

  36. SHEN, C., ZHANG, Y. Z., WANG, Z. X., ZHANG, D. W., and LIU, Z. Y. Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe. International Journal of Heat and Mass Transfer, 168, 120856 (2021)

    Article  Google Scholar 

  37. HIBIKI, T., MAO, K., and OZAKI, T. Development of void fraction-quality correlation for two-phase flow in horizontal and vertical tube bundles. Progress in Nuclear Energy, 97, 38–52 (2017)

    Article  Google Scholar 

  38. GAO, P. X., ZHANG, Y. L., LIU, X. F., YU, T., and WANG, J. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method. Journal of Mechanical Science and Technology, 34 (8), 3137–3146 (2020)

    Article  Google Scholar 

  39. MA, H. Y., LONG, Y., LI, X. H., ZHONG, M. S., YIN, Q., and XIE, Q. M. Attenuation and time-frequency characteristics of explosion ground vibration of shallow buried OD1422-X80mm-12 MPa pipeline based on prototype experiment. Journal of Performance of Constructed Facilities, 34(1), 04019092 (2020)

    Article  Google Scholar 

  40. MA, H. Y., LONG, Y., LI, X. H., ZHONG, M. S., WU, J. Y., and ZHOU, Y. Study on vibration characteristics of natural gas pipeline explosion based on improved MP-WVD algorithm. Shock and Vibration, 34(1), 8969675 (2018)

    Google Scholar 

  41. BALKAYA, M., KAYA, M. O., and SAGlLAMER, A. Free transverse vibrations of an elastically connected simply supported twin pipe system. Structural Engineering & Mechanics, 34(5), 549–561 (2010)

    Article  Google Scholar 

  42. ARMENTANO, M. G., PADRA, C., RODRÍGUEZ, R., and SCHEBLE, M. An hp adaptive strategy to compute the vibration modes of a fluid-solid coupled system. International Journal for Numerical Methods in Fluids, 83, 104024 (2020)

    MATH  Google Scholar 

  43. QIN, B., ALAM, M. M., and ZHOU, Y. Free vibrations of two tandem elastically mounted cylinders in crossflow. Journal of Fluid Mechanics, 861, 369–381 (2019)

    Article  Google Scholar 

  44. ZHANG, Q., ZHOU, X. L., WANG, J. H., and LI, W. L. Dynamic interaction between two parallel submarine pipelines considered vortex-induced vibration and local scour. Marine Georesources & Geotechnology, 37(5), 609–621 (2018)

    Article  Google Scholar 

  45. LI, S. J., KARNEY, B. W., and LIU, G. M. FSI research in pipeline system—a review of the literature. Journal of Fluids and Structures, 57, 277–297 (2015)

    Article  Google Scholar 

  46. TIJSSELING, A. S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration. Journal of Fluids and Structures, 18(2), 179–196 (2003)

    Article  Google Scholar 

  47. VARDY, A. E. and FAN, D. Flexural waves in a closed tube. Proceedings of the 6th International Conference on Pressure Surges, Cambridge, UK, 43–57 (1989)

  48. ULANOV, A. M. and BEZBORODOV, S. A. Calculation method of pipeline vibration with damping supports made of the MR material. Procedia Engineering, 150, 101–106 (2016)

    Article  Google Scholar 

  49. TENTARELLI, S. C. Propagation of Noise and Vibration in Complex Hydraulic Tubing Systems, Ph. D. dissertation, Lehigh University, 29–47 (1989)

Download references

Funding

Project supported by the National Natural Science Foundation of China (No. 11972112), the Fundamental Research Funds for the Central Universities of China (Nos. N2103024 and N2103002), and the Major Projects of Aero-Engines and Gasturbines (No. J2019-I-0008-0008)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma.

Additional information

Citation: GUO, X. M., XIAO, C. L., MA, H., LI, H., ZHANG, X. F., and WEN, B. C. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling. Applied Mathematics and Mechanics (English Edition), 43(8), 1269–1288 (2022) https://doi.org/10.1007/s10483-022-2883-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xiao, C., Ma, H. et al. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling. Appl. Math. Mech.-Engl. Ed. 43, 1269–1288 (2022). https://doi.org/10.1007/s10483-022-2883-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2883-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation