Skip to main content
Log in

Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a non-Newtonian Ag-MgO hybrid nanofluid. The wavy shaped enclosure is equipped with one-quarter of a conducting solid cylinder. The system of equations resulting from the mathematical modeling of the physical problem in its dimensionless form is discretized via the higher-order Galerkin-based finite element method (GFEM). The dependency of various factors and their interrelationships affecting the hydro-thermal behavior and heat exchange rate are delineated. The numerical experiments reveal that the best heat transfer rate is achieved for the pseudo-plastic hybrid nanoliquid with high Rayleigh number and thermal conductivity ratio and low Hartmann number. Besides, the power-law index has a major effect in deteriorating the heat convection at high Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

amplitude

c p :

specific heat

A R :

aspect ratio

n :

power-law index

k :

thermal conductivity

N :

undulation number

K r :

thermal conductivity ratio

H :

total length of the cavity, m

Nu, Nu avg :

local, average Nusselt numbers

Ra :

Rayleigh number

Pr :

Prandtl number

Ha :

Hartmann number

P :

dimensionless pressure

T :

temperature, °C

U,V :

non-dimensional velocities in the X- and Y-directions

X,Y :

non-dimensional coordinates

m :

consistency coefficient

T* :

transpose.

θ :

non-dimensional temperature

ϕ :

volume fraction of hybrid nanoparticles

α :

thermal diffusivity, m2 · s−1

τ :

stress tensor

ρ :

density of fluid, kg · m−3

μ :

dynamic viscosity

ν :

kinematic viscosity.

c:

cold

avg:

average

e:

effective

hnf:

hybrid nanofluid

f:

fluid

h:

hot

s:

solid.

References

  1. ÖZTOP, H. F., ESTELLÉ, P., YAN, W. M., AL-SALEM, K., ORFI, J., and MAHIAN, O. A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer, 60, 37–44 (2015)

    Article  Google Scholar 

  2. SADEGHI, M. S., ANADALIBKHAH, N., GHASEMIASL, R., ARMAGHANI, T., DOGONCHI, A. S., CHAMKHA, A. J., and ASADI, A. On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. Journal of Thermal Analysis and Calorimetry, 1–22 (2020)

  3. YANG, L. and DU, K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. Journal of Thermal Analysis and Calorimetry, 140(5), 2033–2054 (2020)

    Article  Google Scholar 

  4. HUMINIC, G. and HUMINIC, A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review. Journal of Molecular Liquids, 302, 112533 (2020)

    Article  MATH  Google Scholar 

  5. PISHKAR, I., GHASEMI, B., RAISI, A., and AMINOSSADATI, S. M. Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. Journal of Thermal Analysis and Calorimetry, 138(2), 1697–1710 (2019)

    Article  Google Scholar 

  6. PANDEY, S., PARK, Y. G., and HA, M. Y. An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. International Journal of Heat and Mass Transfer, 138, 762–795 (2019)

    Article  Google Scholar 

  7. RAHIMI, A., SAEE, A. D., KASAEIPOOR, A., and MALEKSHAH, E. H. A comprehensive review on natural convection flow and heat transfer: the most practical geometries for engineering applications. International Journal of Numerical Methods for Heat & Fluid Flow, 29(3), 834–877 (2019)

    Article  Google Scholar 

  8. AHMED, S. E. Effect of fractional derivatives on natural convection in a complex-wavy-wall surrounded enclosure filled with porous media using nanofluids. Journal of Applied Mathematics and Mechanics, 100(1), e201800323 (2020)

    MathSciNet  Google Scholar 

  9. GIWA, S. O., SHARIFPUR, M., AHMADI, M. H., and MEYER, J. P. Magnetohydrodynamic convection behaviours of nanofluids in non-square enclosures: a comprehensive review. Mathematical Methods in the Applied Sciences (2020) https://doi.org/10.1002/mma.6424

  10. ABDULKADHIM, A., AL-FARHANY, K., ABED, A. M., and MAJDI, H. S. Comprehensive review of natural convection heat transfer in annulus complex enclosures. Al-Qadisiyah Journal for Engineering Sciences, 13(2), 80–90 (2020)

    Article  Google Scholar 

  11. GIWA, S. O., SHARIFPUR, M., AHMADI, M. H., and MEYER, J. P. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. Journal of Thermal Analysis and Calorimetry, 145(5), 2581–2623 (2021)

    Article  Google Scholar 

  12. SHEIKHOLESLAMI, M. and SEYEDNEZHAD, M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. International Journal of Heat and Mass Transfer, 120, 772–781 (2018)

    Article  Google Scholar 

  13. MAHDY, A. and AHMED, S. E. Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transport in Porous Media, 91(2), 423–435 (2012)

    Article  MathSciNet  Google Scholar 

  14. HUSSAIN, S., ÖZTOP, H. F., MEHMOOD, K., and ABU-HAMDEH, N. Effects of inclined magnetic field on mixed convection in a nanofluid filled double lid-driven cavity with volumetric heat generation or absorption using finite element method. Chinese Journal of Physics, 56(2), 484–501 (2018)

    Article  Google Scholar 

  15. AHMED, S. E. and RASHED, Z. Z. MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Studies in Thermal Engineering, 14, 100430 (2019)

    Article  Google Scholar 

  16. COUSSOT, P. Yield stress fluid flows: a review of experimental data. Journal of Non-Newtonian Fluid Mechanics, 211, 31–49 (2014)

    Article  Google Scholar 

  17. LU, G., WANG, X. D., and DUAN, Y. Y. A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids. Advances in Colloid and Interface Science, 236, 43–62 (2016)

    Article  Google Scholar 

  18. OHTA, M., OHTA, M., AKIYOSHI, M., and OBATA, E. A numerical study on natural convective heat transfer of pseudoplastic fluids in a square cavity. Numerical Heat Transfer, Part A: Applications, 41(4), 357–372 (2002)

    Article  Google Scholar 

  19. KIM, G. B., HYUN, J. M., and KWAK, H. S. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. International Journal of Heat and Mass Transfer, 46(19), 3605–3617 (2003)

    Article  MATH  Google Scholar 

  20. LAMSAADI, M., NAIMI, M., HASNAOUI, M., and MAMOU, M. Natural convection in a vertical rectangular cavity filled with a non-Newtonian power law fluid and subjected to a horizontal temperature gradient. Numerical Heat Transfer, Part A: Applications, 49(10), 969–990 (2006)

    Article  Google Scholar 

  21. KEFAYATI, G. H. R. Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity. International Journal of Heat and Mass Transfer, 116, 762–812 (2018)

    Article  Google Scholar 

  22. LOENKO, D. S., SHENOY, A., and SHEREMET, M. A. Natural convection of non-Newtonian power-law fluid in a square cavity with a heat-generating element. Energies, 12(11), 2149 (2019)

    Article  Google Scholar 

  23. YIGIT, S. and CHAKRABORTY, N. Rayleigh-Benard power-law fluid convection in rectangular enclosures. Journal of Thermophysics and Heat Transfer, 31(4), 805–816 (2017)

    Article  Google Scholar 

  24. SOJOUDI, A., SAHA, S. C., GU, Y., and HOSSAIN, M. A. Steady natural convection of non-Newtonian power-law fluid in a trapezoidal enclosure. Advances in Mechanical Engineering, 5, 653108 (2013)

    Article  Google Scholar 

  25. TURAN, O., SACHDEVA, A., CHAKRABORTY, N., and POOLE, R. J. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. Journal of Non-Newtonian Fluid Mechanics, 166(17–18), 1049–1063 (2011)

    Article  MATH  Google Scholar 

  26. KHEZZAR, L., SIGINER, D., and VINOGRADOV, I. Natural convection of power law fluids in inclined cavities. International Journal of Thermal Sciences, 53, 8–17 (2012)

    Article  Google Scholar 

  27. KEFAYATI, G. R. Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM. International Communications in Heat and Mass Transfer, 53, 139–153 (2014)

    Article  Google Scholar 

  28. JAHANBAKHSHI, A., NADOOSHAN, A. A., and BAYAREH, M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. Journal of Thermal Analysis and Calorimetry, 133(3), 1407–1416 (2018)

    Article  Google Scholar 

  29. SASMAL, C. and CHHABRA, R. P. Laminar free convection in power-law fluids from a heated hemisphere. Journal of Thermophysics and Heat Transfer, 28(4), 750–763 (2014)

    Article  Google Scholar 

  30. TIWARI, A. K. and CHHABRA, R. P. Laminar free convection in Bingham plastic fluids from an isothermal semicircular cylinder. Journal of Thermophysics and Heat Transfer, 30(2), 369–378 (2016)

    Article  Google Scholar 

  31. MAHROOD, M. R. K., ETEMAD, S. G., and BAGHERI, R. Free convection heat transfer of non-Newtonian nanofluids under constant heat flux condition. International Communications in Heat and Mass Transfer, 38(10), 1449–1454 (2011)

    Article  Google Scholar 

  32. TERNIK, P. and RUDOLF, R. Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls. International Journal of Simulation Modelling, 12(1), 5–16 (2013)

    Article  Google Scholar 

  33. ALSABERY, A. I., CHAMKHA, A. J., SALEH, H., and HASHIM, I. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technology, 308, 214–234 (2017)

    Article  Google Scholar 

  34. KEFAYATI, G. H. R. and TANG, H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. International Journal of Hydrogen Energy, 42(27), 17284–17327 (2017)

    Article  Google Scholar 

  35. SIAVASHI, M. and ROSTAMI, A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. International Journal of Mechanical Sciences, 133, 689–703 (2017)

    Article  Google Scholar 

  36. RAIZAH, Z. A. S., ALY, A. M., and AHMED, S. E. Natural convection flow of a power-law non-Newtonian nanofluid in inclined open shallow cavities filled with porous media. International Journal of Mechanical Sciences, 140, 376–393 (2018)

    Article  Google Scholar 

  37. SHAHSAVAR, A., NOORI, S., TOGHRAIE, D., and BARNOON, P. Free convection of non-Newtonian nanofluid flow inside an eccentric annulus from the point of view of first-law and second-law of thermodynamics. Journal of Applied Mathematics and Mechanics, 101(5), e202000266 (2021)

    MathSciNet  Google Scholar 

  38. ALI, F. H., HAMZAH, H. K., EGAB, K., ARICI, M., and SHAHSAVAR, A. Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. International Journal of Mechanical Sciences, 186, 105887 (2020)

    Article  Google Scholar 

  39. ACHARYA, S. and DASH, S. K. Natural convection and entropy generation in a porous enclosure filled with non-Newtonian nanofluid. Journal of Thermophysics and Heat Transfer (2021) https://doi.org/10.2514/1.T6126

  40. GHALAMBAZ, M., DOOSTANI, A., and IZADPANAHI, E. Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity. Journal of Thermal Analysis and Calorimetry, 139, 2321–2336 (2020)

    Article  Google Scholar 

  41. ESFE, M. H., ARANI, A. A. A., REZAIE, M., YAN, W. M., and KARIMIPOUR, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. International Communications in Heat and Mass Transfer, 66, 189–195 (2015)

    Article  Google Scholar 

  42. SELIMEFENDIGIL, F. and ÖZTOP, H. F. Impact of a rotating cone on forced convection of Ag-MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. Journal of Thermal Analysis and Calorimetry, 143, 1485–1501 (2021)

    Article  Google Scholar 

  43. HUSSAIN, S., SCHIEWECK, F., and TUREK, S. Efficient Newton multigrid solution techniques for higher order space time Galerkin discretizations of incompressible flow. Applied Numerical Mathematics, 83, 51–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. HUSSAIN, S., MEHMOOD, K., SAGHEER, M., and FAROOQ, A. Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium. International Communications in Heat and Mass Transfer, 89, 198–210 (2017)

    Article  Google Scholar 

  45. DONEA, J. and HUERTA, A. Finite Element Methods for Flow Problems, Wiley, New Jersey (2003)

    Book  Google Scholar 

  46. LEWIS, R. W., NITHIARASU, P., and SEETHARAMU, K. N. Fundamentals of the Finite Element Method for Heat and Fluid Flow, Wiley, New Jersey (2004)

    Book  Google Scholar 

  47. HO, C., LIU, W., CHANG, Y., and LIN, C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. International Journal of Thermal Sciences, 49(8), 1345–1353 (2010)

    Article  Google Scholar 

  48. SHULEPOVA, E. V., SHEREMET, M. A., OZTOP, H. F., and ABU-HAMDEH, N. Mixed convection of Al2O3−H2O nanoliquid in a square chamber with complicated fin. International Journal of Mechanical Sciences, 165, 105192 (2020)

    Article  Google Scholar 

  49. SAGHIR, M. Z., AHADI, A., MOHAMAD, A., and SRINIVASAN, S. Water aluminum oxide nanofluid benchmark model. International Journal of Thermal Sciences, 109, 148–158 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hussain.

Additional information

Citation: HUSSAIN, S., TAYEBI, T., ARMAGHANI, T., RASHAD, A. M., and NABWEY, H. A. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure. Applied Mathematics and Mechanics (English Edition), 43(3), 447–466 (2022) https://doi.org/10.1007/s10483-022-2837-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Tayebi, T., Armaghani, T. et al. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure. Appl. Math. Mech.-Engl. Ed. 43, 447–466 (2022). https://doi.org/10.1007/s10483-022-2837-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2837-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation