Skip to main content
Log in

Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional (2D) viscoelastic media. The fractional Kelvin-Zener constitutive model is used to describe the time-dependent behavior of viscoelastic materials. Within the framework of symplectic elasticity, the governing equations in the Hamiltonian form for the frequency domain (s-domain) can be directly and rigorously calculated. In the s-domain, the analytical solutions of the displacement and stress fields are constructed by superposing the symplectic eigensolutions without any trial function, and the explicit expressions of the intensity factors and J-integral are derived simultaneously. Comparison studies are provided to validate the accuracy and effectiveness of the present solutions. A detailed analysis is made to reveal the effects of viscoelastic parameters and applied loads on the intensity factors and J-integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MERAL, F. C., ROYSTON, T. J., and MAGIN, R. Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15(4), 939–945 (2010)

    Article  MathSciNet  Google Scholar 

  2. KOBAYASHI, Y., TSUKUNE, M., MIYASHITA, T., and FUJIE, M. G. Simple empirical model for identifying rheological properties of soft biological tissues. Physical Review E, 95(2), 022418 (2017)

    Article  Google Scholar 

  3. DU, M. L., WANG, Z. H., and HU, H. Y. Measuring memory with the order of fractional derivative. Scientific Reports, 3, 3431 (2013)

    Article  Google Scholar 

  4. MAGIN, R. L. Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications, 59(5), 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  5. IONESCU, C., LOPES, A., COPOT, D., MACHADO, J. A. T., and BATES, J. H. T. The role of fractional calculus in modeling biological phenomena: a review. Communications in Nonlinear Science and Numerical Simulation, 51, 141–159 (2017)

    Article  MathSciNet  Google Scholar 

  6. FITZGIBBON, B. and MCGARRY, P. Development of a test method to investigate mode II fracture and dissection of arteries. Acta Biomaterialia, 121, 444–460 (2021)

    Article  Google Scholar 

  7. TONG, X., CHEN, X., XU, J. S., SUN, C. X., and LIANG, W. Excitation of thermal dissipation of solid propellants during the fatigue process. Materials & Design, 128, 47–55 (2017)

    Article  Google Scholar 

  8. ZHANG, C. Y. Viscoelastic Fracture Mechanics, Science Press, Beijing (2006)

    Google Scholar 

  9. KNAUSS, W. G. A review of fracture in viscoelastic materials. International Journal of Fracture, 196(1), 99–146 (2015)

    Article  Google Scholar 

  10. WANG, Z. H., ZHANG, L., and GUO, L. C. A viscoelastic fracture mechanics model for a functionally graded materials strip with general mechanical properties. European Journal of Mechanics A/Solids, 44, 75–81 (2014)

    Article  MathSciNet  Google Scholar 

  11. YANG, W. Z. and CHEN, Z. T. Thermo-viscoelastic response of a cracked, functionally graded half-plane under a thermal shock. Engineering Fracture Mechanics, 206, 267–277 (2019)

    Article  Google Scholar 

  12. YANG, W. Z. and CHEN, Z. T. Investigation of transient thermal-mechanical behavior of a cracked viscoelastic material using time-fractional dual-phase-lag theory. Theoretical and Applied Fracture Mechanics, 106, 102500 (2020)

    Article  Google Scholar 

  13. ZHOU, X. P., HUANG, X. C., and BERTO, F. A three-dimensional long-term strength criterion of rocks based on micromechanical method. Theoretical and Applied Fracture Mechanics, 97, 409–418 (2018)

    Article  Google Scholar 

  14. DUAN, J. B., LEI, Y. J., and LI, D. K. Fracture analysis of linear viscoelastic materials using triangular enriched crack tip elements. Finite Elements in Analysis and Design, 47(10), 1157–1168 (2011)

    Article  MathSciNet  Google Scholar 

  15. TOOLABI, M., FALLAH, A. S., BAIZ, P. M., and LOUCA, L. A. Dynamic analysis of a viscoelastic orthotropic cracked body using the extended finite element method. Engineering Fracture Mechanics, 109, 17–32 (2013)

    Article  Google Scholar 

  16. HOU, J. L., ZHANG, C., and LI, Q. The concept and numerical evaluation of M-integral based on domain integral method in cracked viscoelastic materials. Mechanics of Materials, 145, 103363 (2020)

    Article  Google Scholar 

  17. HE, J., LIU, Q. S., and WU, Z. J. Creep crack analysis of viscoelastic material by numerical manifold method. Engineering Analysis with Boundary Elements, 80, 72–86 (2017)

    Article  MathSciNet  Google Scholar 

  18. SHEN, R. L., WAISMAN, H., and GUO, L. C. Fracture of viscoelastic solids modeled with a modified phase field method. Computer Methods in Applied Mechanics and Engineering, 346, 862–890 (2019)

    Article  MathSciNet  Google Scholar 

  19. BUI, T. Q. and HU, X. F. A review of phase-field models, fundamentals and their applications to composite laminates. Engineering Fracture Mechanics, 248, 107705 (2021)

    Article  Google Scholar 

  20. ZHAN, R. T., LI, Z. X., and WANG, L. A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials. Acta Mechanica Sinica, 30(3), 403–409 (2014)

    Article  MathSciNet  Google Scholar 

  21. PENG, Y., ZHAO, J. Z., SEPEHRNOORI, K., LI, Z. L., and XU, F. Study of delayed creep fracture initiation and propagation based on semi-analytical fractional model. Applied Mathematical Modelling, 72, 700–715 (2019)

    Article  MathSciNet  Google Scholar 

  22. PENG, Y., ZHAO, J. Z., SEPEHRNOORI, K., and LI, Z. L. Fractional model for simulating the viscoelastic behavior of artificial fracture in shale gas. Engineering Fracture Mechanics, 228, 106892 (2020)

    Article  Google Scholar 

  23. DING, X., ZHANG, F., ZHANG, G. Q., YANG, L., and SHAO, J. F. Modeling of hydraulic fracturing in viscoelastic formations with the fractional Maxwell model. Computers and Geotechnics, 126, 103723 (2020)

    Article  Google Scholar 

  24. YAO, W. A., ZHONG, W. X., and LIM, C. W. Symplectic Elasticity, World Scientific, Singapore (2009)

    Book  Google Scholar 

  25. LIM, C. W. and XU, X. S. Symplectic elasticity: theory and applications. Applied Mechanics Reviews, 63(5), 050802 (2011)

    Article  Google Scholar 

  26. HU, W. P., YIN, T. T., ZHENG, W., and DENG, Z. C. Symplectic analysis on orbit-attitude coupling dynamic problem of spatial rigid rod. Journal of Vibration and Control, 26, 1614–1624 (2020)

    Article  MathSciNet  Google Scholar 

  27. LIM, C. W., LYU, C. F., XIANG, Y., and YAO, W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science, 47(1), 131–140 (2009)

    Article  MathSciNet  Google Scholar 

  28. LI, R., ZHENG, X. R., YANG, Y. S., HUANG, M. Q., and HUANG, X. W. Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Applied Mathematical Modelling, 76, 900–917 (2019)

    Article  MathSciNet  Google Scholar 

  29. ZHANG, W. X., BAI, Y., WANG, J. W., and CHEN, L. Symplectic system analysis for finite sector plates of viscoelastic media. International Journal of Engineering Science, 79, 30–43 (2014)

    Article  MathSciNet  Google Scholar 

  30. ZHAO, L., CHEN, W. Q., and LU, C. F. Two-dimensional complete rational analysis of functionally graded beams within the symplectic framework. Applied Mathematics and Mechanics (English Edition), 33(10), 1143–1155 (2012) https://doi.org/10.1007/s10483-012-1617-8

    Article  MathSciNet  Google Scholar 

  31. XU, X. S., TONG, Z. Z., RONG, D. L., CHENG, X. H., XU, C. H., and ZHOU, Z. H. Fracture analysis of magnetoelectroelastic bimaterials with imperfect interfaces by symplectic expansion. Applied Mathematics and Mechanics (English Edition), 38(8), 1043–1058 (2017) https://doi.org/10.1007/s10483-017-2222-9

    Article  MathSciNet  Google Scholar 

  32. XU, X. S., CHENG, X. H., ZHOU, Z. H., and XU, C. H. An analytical approach for the mixed-mode crack in linear viscoelastic media. European Journal of Mechanics A/Solids, 52, 12–25 (2015)

    Article  MathSciNet  Google Scholar 

  33. HU, X. F., SHEN, Q. S., WANG, J. N., YAO, W. A., and YANG, S. T. A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface. Applied Mathematical Modelling, 50, 361–379 (2017)

    Article  MathSciNet  Google Scholar 

  34. WANG, J. S. and QIN, Q. H. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine, 87(2), 225–251 (2007)

    Article  Google Scholar 

  35. YAO, W. A., LI, X., and HU, X. F. Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm. International Journal of Fracture, 214(1), 29–48 (2018)

    Article  Google Scholar 

  36. LI, X., YAO, W. A., HU, X. F., and JIN, Q. L. Interfacial crack analysis between dissimilar viscoelastic media using symplectic analytical singular element. Engineering Fracture Mechanics, 219, 106628 (2019)

    Article  Google Scholar 

  37. YU, Y., PERDIKARIS, P., and KARNIADAKIS, G. E. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. Journal of Computational Physics, 323, 219–242 (2016)

    Article  MathSciNet  Google Scholar 

  38. RICE, J. R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379–386 (1968)

    Article  Google Scholar 

  39. STEHFEST, H. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(1), 47–49 (1970)

    Article  Google Scholar 

  40. SYNGELLAKIS, S. and WU, J. W. Evaluation of polymer fracture parameters by the boundary element method. Engineering Fracture Mechanics, 75(5), 1251–1265 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zichen Deng.

Additional information

Citation: XU, C. H., LENG, S., ZHOU, Z. H., XU, X. S., and DENG, Z. C. Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media. Applied Mathematics and Mechanics (English Edition), 43(3), 403–416 (2022) https://doi.org/10.1007/s10483-022-2825-8

Project supported by the National Natural Science Foundation of China (Nos. 11872303 and 11702221), the China Postdoctoral Science Foundation (No. 2017M613198), and the Fundamental Research Funds for the Central Universities of China (No. G2020KY05402)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Leng, S., Zhou, Z. et al. Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media. Appl. Math. Mech.-Engl. Ed. 43, 403–416 (2022). https://doi.org/10.1007/s10483-022-2825-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2825-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation