Skip to main content
Log in

Prelithiation design for suppressing delamination in lithium-ion battery electrodes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Prelithiation has been intensively investigated in high-capacity lithium-ion batteries (LIBs). However, the optimization of prelithiation degrees for long service life of LIBs still remains a challenge. The positive efffect of prelithiation on suppressing degradation of LIBs, besides directly pursuing the high first Coulomb efficiency which has been widely reported in the literature, is revealed and discussed based on an analytical model focusing on the interfacial delamination in electrodes. For full charge-discharge cycling, well-designed prelithiation can effectively suppress the delamination and reduce the debonding size by approximately 25%, compared with the case without prelithiation. For the strategy combining partial charge-discharge cycling and prelithiation, the largest reversible capacity without debonding can be significantly improved by approximately 100% with well-designed prelithiation. This work is expected to provide a prelithiation design principle and further improve the mechanical stability of LIB electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PALACIN, M. R. and DE GUIBERT, A. Why do batteries fail?. Science, 351, 1253292 (2016).

    Article  Google Scholar 

  2. ANDRE, D., KIM, S. J., LAMP, P., LUX, S. F., MAGLIA, F., PASCHOS, O., and STIASZNY, B. Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry A, 3, 6709–6732 (2015).

    Article  Google Scholar 

  3. VETTER, J., NOVÁK, P., WAGNER, M. R., VEIT, C., MÖLLER, K. C., BESENHARD, J. O., WINTER, M., WOHLFAHRT-MEHRENS, M., VOGLER, C., and HAMMOUCHE, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269–281 (2005).

    Article  Google Scholar 

  4. GOODENOUGH, J. B. and PARK, K. S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 135, 1167–1176 (2013).

    Article  Google Scholar 

  5. WOHLFAHRT-MEHRENS, M., VOGLER, C., and GARCHE, J. Aging mechanisms of lithium cathode materials. Journal of Power Sources, 127, 58–64 (2004).

    Article  Google Scholar 

  6. LU, B., NING, C. Q., SHI, D. X., ZHAO, Y. F., and ZHANG, J. Q. Review on electrode-level fracture in lithium-ion batteries. Chinese Physics B, 29, 026201 (2020).

    Article  Google Scholar 

  7. XIAO, X. C., LIU, P., VERBRUGGE, M. W., HAFTBARADARAN, H., and GAO, H. J. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. Journal of Power Sources, 196, 1409–1416 (2011).

    Article  Google Scholar 

  8. ZHAO, C. H., WADA, T., ANDRADE, V. D., GÜRSOY, D., KATO, H., and CHEN-WIEGART, Y. C. K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy, 52, 381–390 (2018).

    Article  Google Scholar 

  9. PAL, S., DAMLE, S. S., PATEL, S. H., DATTA, M. K., KUMTA, P. N., and MAITI, S. Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. Journal of Power Sources, 246, 149–159 (2014).

    Article  Google Scholar 

  10. LIU, M., GAO, C. H., and YANG, F. Q. Analysis of diffusion-induced delamination of an elastic-perfectly plastic film on a deformable substrate under potentiostatic operation. Modelling and Simulation in Materials Science and Engineering, 25, 065019 (2017).

    Article  Google Scholar 

  11. LU, B., SONG, Y. C., GUO, Z. S., and ZHANG, J. Q. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids and Structures, 50, 2495–2507 (2013).

    Article  Google Scholar 

  12. LU, B., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Analytical model on lithiation-induced interfacial debonding of an active layer from a rigid substrate. Journal of Applied Mechanics, 83, 121009 (2016).

    Article  Google Scholar 

  13. KIM, H. J., CHOI, S., LEE, S. J., SEO, M. W., LEE, J. G., DENIZ, E., LEE, Y. J., KIM, E. K., and CHOI, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters, 16, 282–288 (2016).

    Article  Google Scholar 

  14. ZHAO, H., WANG, Z. H., LU, P., JIANG, M., SHI, F. F., SONG, X. Y., ZHENG, Z. Y., ZHOU, X., FU, Y. B., ABDELBAST, G., XIAO, X. C., LIU, Z., BATTAGLIA, V. S., ZAGHIB, K., and LIU, G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Letters, 14, 6704–6710 (2014)

  15. HOLTSTIEGE, F., WILKEN, A., WINTER, M., and PLACKE, T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 19, 25905–25918 (2017).

    Article  Google Scholar 

  16. DOMI, Y., USUI, H., IWANARI, D., and SAKAGUCHI, H. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries. Journal of the Electrochemical Society, 164, A1651–A1654 (2017).

    Article  Google Scholar 

  17. KIM, K. H., SHON, J., JEONG, H., PARK, H., LIM, S. J., and HEO, J. S. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. Journal of Power Sources, 459, 228066 (2020).

    Article  Google Scholar 

  18. LIU, Q. Q., DU, C. Y., SHEN, B., ZUO, P. J., CHENG, X. Q., MA, Y. L., YIN, G. P., and GAO, Y. Z. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances, 6, 88683–88700 (2016).

    Article  Google Scholar 

  19. HUANG, B., HUANG, T., WAN, L. Y., and YU, A. S. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustainable Chemistry and Engineering, 9, 648–657 (2021).

    Article  Google Scholar 

  20. ZHAO, J., LU, Z. D., LIU, N., LEE, H. W., MCDOWELL, M. T., and CUI, Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications, 5, 5088 (2014).

    Article  Google Scholar 

  21. LI, S. H., WANG, C., YU, J. M., HAN, Y. Y., and LU, Z. D. Understanding the role of conductive polymer in thermal lithiation and battery performance of Li-Sn alloy anode. Energy Storage Materials, 20, 7–13 (2019).

    Article  Google Scholar 

  22. DOMI, Y., USUI, H., IEUJI, N., NISHIKAWA, K., and SAKAGUCHI, H. Lithiation/delithiation properties of lithium silicide electrodes in ionic-liquid electrolytes. ACS Applied Materials & Interfaces, 13, 3816–3824 (2021).

    Article  Google Scholar 

  23. LU, B., SONG, Y. C., and ZHANG, J. Q. Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries. Journal of Power Sources, 289, 168–183 (2015).

    Article  Google Scholar 

  24. LU, B., SONG, Y. C., GUO, Z. S., and ZHANG, J. Q. Analysis of delamination in thin film electrodes under galvanostatic and potentiostatic operations with Li-ion diffusion from edge. Acta Mechanica Sinica, 29, 348–356 (2013).

    Article  MathSciNet  Google Scholar 

  25. KOERVER, R., ZHANG, W. B., DE BIASI, L., SCHWEIDLER, S., KONDRAKOV, A. O., KOLLING, S., BREZESINSKI, T., HARTMANN, P., ZEIER, W. G., and JANEK, J. on the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science, 11, 2142–2158 (2018).

    Article  Google Scholar 

  26. SHENOY, V. B., JOHARI, P., and QI, Y. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study. Journal of Power Sources, 195, 6825–6830 (2010).

    Article  Google Scholar 

  27. XU, R. and ZHAO, K. J. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 121, 258–280 (2018).

    Article  MathSciNet  Google Scholar 

  28. GUO, Z. S., LIU, C., LU, B., and FENG, J. M. Theoretical and experimental study on the interfacial adhesive properties of graphite electrodes in different charging and aging states. Carbon, 150, 32–42 (2019).

    Article  Google Scholar 

  29. STOURNARA, M. E., XIAO, X. C., QI, Y., JOHARI, P., LU, P., SHELDON, B. W., GAO, H. J., and SHENOY, V. B. Li segregation induces structure and strength changes at the amorphous Si/Cu interface. Nano Letters, 13, 4759–4768 (2013).

    Article  Google Scholar 

  30. HU, J. Z., WANG, Y. K., LI, D. W., and CHEN, Y. T. Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes. Journal of Power Sources, 397, 223–230 (2018).

    Article  Google Scholar 

  31. LI, J., DOZIER, A. K., LI, Y., YANG, F., and CHEN, Y. T. Crack pattern formation in thin film lithium-ion battery electrodes. Journal of the Electrochemical Society, 158, A689–A694 (2011).

    Article  Google Scholar 

  32. CHAN, C. K., PENG, H., LIU, G., MCILWRATH, K., ZHANG, X. F., HUGGINS, R. A., and CUI, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 3, 31–35 (2008).

    Article  Google Scholar 

  33. LI, Y., LU, B., GUO, B. K., SONG, Y. C., and ZHANG, J. Q. Partial lithiation strategies for suppressing degradation of silicon composite electrodes. Electrochimica Acta, 295, 778–786 (2019).

    Article  Google Scholar 

  34. WEN, S. H., LU, B., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Feigned death induced by partial delithiation in silicon composite electrodes. Journal of Power Sources, 495, 229763 (2021).

    Article  Google Scholar 

  35. KAMALI, A. and FRAY, D. J. Review on carbon and silicon based materials as anode materials for lithium ion batteries. Journal of New Materials for Electrochemical Systems, 13, 147–160 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lu.

Additional information

Citation: QIAN, Y. F., LU, B., BAO, Y. H., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Prelithiation design for suppressing delamination in lithium-ion battery electrodes. Applied Mathematics and Mechanics (English Edition), 42(12), 1703–1716 (2021) https://doi.org/10.1007/s10483-021-2800-8

Project supported by the National Natural Science Foundation of China (Nos. 12072183, 11872236, and 12172205)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Lu, B., Bao, Y. et al. Prelithiation design for suppressing delamination in lithium-ion battery electrodes. Appl. Math. Mech.-Engl. Ed. 42, 1703–1716 (2021). https://doi.org/10.1007/s10483-021-2800-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2800-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation