Skip to main content
Log in

Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The four-dimensional (4D) printing technology, as a combination of additive manufacturing and smart materials, has attracted increasing research interest in recent years. The bilayer structures printed with smart materials using this technology can realize complicated deformation under some special stimuli due to the material properties. The deformation prediction of bilayer structures can make the design process more rapid and thus is of great importance. However, the previous works on deformation prediction of bilayer structures rarely study the complicated deformations or the influence of the printing process on deformation. Thus, this paper proposes a new method to predict the complicated deformations of temperature-sensitive 4D printed bilayer structures, in particular to the bilayer structures based on temperature-driven shape-memory polymers (SMPs) and fabricated using the fused deposition modeling (FDM) technology. The programming process to the material during printing is revealed and considered in the simulation model. Simulation results are compared with experiments to verify the validity of the method. The advantages of this method are stable convergence and high efficiency, as the three-dimensional (3D) problem is converted to a two-dimensional (2D) problem. The simulation parameters in the model can be further associated with the printing parameters, which shows good application prospect in 4D printed bilayer structure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHUNG, S., SONG, S. E., and CHO, Y. T. Effective software solutions for 4D printing: a review and proposal. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 359–371 (2017)

    Article  Google Scholar 

  2. KUANG, X., ROACH, D. J., WU, J. T., HAMEL, C. M., DING, Z., WANG, T. J., DUNN, M. L., and QI, H. J. Advances in 4D printing: materials and applications. Advanced Functional Materials, 29(2), 1805290 (2019)

    Article  Google Scholar 

  3. WU, J. J., HUANG, L. M., ZHAO, Q., and XIE, T. 4D printing: history and recent progress. Chinese Journal of Polymer Science, 36(5), 563–575 (2018)

    Article  Google Scholar 

  4. MOMENI, F., LIU, X., and NI, J. A review of 4D printing. Materials & Design, 122, 42–79 (2017)

    Article  Google Scholar 

  5. KUKSENOK, O. and BALAZS, A. C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 3(1), 53–62 (2016)

    Article  Google Scholar 

  6. RYU, J., JUNG, B. S., KIM, M. S., KONG, J. P., CHO, M. H., and AHN, S. H. Numerical simulation of hybrid composite shape-memory alloy wire-embedded structures. Journal of Intelligent Material Systems and Structures, 22(17), 1941–1948 (2011)

    Article  Google Scholar 

  7. AKBARI, S., SAKHAEI, A. H., KOWSARI, K., YANG, B., SERJOUEI, A., ZHANG, Y. F., and GE, Q. Enhanced multimaterial 4D printing with active hinges. Smart Materials and Structures, 27(6), 065027 (2018)

    Article  Google Scholar 

  8. GE, Q., SAKHAEI, A. H., LEE, H., DUNN, C. K., FANG, N. X., and DUNN, M. L. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 1–11 (2016)

    Article  Google Scholar 

  9. SONG, Z. Y., REN, L. Q., ZHAO, C., LIU, H. L., YU, Z. L., LIU, Q. P., and REN, L. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Applied Materials & Interfaces, 12(5), 6351–6361 (2020)

    Article  Google Scholar 

  10. WANG, G. Y., TAO, Y., CAPUNAMAN, O. B., YANG, H., and YAO, L. N. A-line: 4D printing morphing linear composite structures. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, 1–12 (2019)

    Google Scholar 

  11. SOSSOU, G., DEMOLY, F., BELKEBIR, H., QI, H., GOMES, S., and MONTAVON, G. Design for 4D printing: a voxel-based modeling and simulation of smart materials. Materials & Design, 175, 107798 (2019)

    Article  Google Scholar 

  12. SOSSOU, G., DEMOLY, F., BELKEBIR, H., QI, H., GOMES, S., and MONTAVON, G. Design for 4D printing: modeling and computation of smart materials distributions. Materials & Design, 181, 108074 (2019)

    Article  Google Scholar 

  13. ZHANG, Z. and GU, G. X. Finite-element-based deep-learning model for deformation behavior of digital materials. Advanced Theory and Simulations, 3(7), 2000031 (2020)

    Article  Google Scholar 

  14. QIU, H., FENG, Y. X., GAO, Y. C., ZENG, S. Y., and TAN, J. R. The origami inspired design of polyhedral cells of truss core panel. Thin-Walled Structures, 163, 107725 (2021)

    Article  Google Scholar 

  15. DENG, D. and CHEN, Y. Origami-based self-folding structure design and fabrication using projection based stereolithography. Journal of Mechanical Design, 137(2), 021701 (2015)

    Article  Google Scholar 

  16. DENG, D. and CHEN, Y. 4D printing: design and fabrication of 3D shell structures with curved surfaces using controlled self-folding. ASME 2015 International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers Digital Collection, North Carolina (2015)

    Google Scholar 

  17. MAO, Y., YU, K., ISAKOV, M. S., WU, J. T., DUNN, M. L., and QI, H. J. Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 1–12 (2015)

    Article  Google Scholar 

  18. ZENG, S. Y., FENG, Y. X., GAO, Y. C., ZHENG, H., and TAN, J. R. Layout design and application of 4D-printing bio-inspired structures with programmable actuators. Bio-Design and Manufacturing (2021) https://doi.org/10.1007/s42242-021-00146-3

  19. GE, Q., DUNN, C. K., QI, H. J., and DUNN, M. L. Active origami by 4D printing. Smart Materials and Structures, 23(9), 094007 (2014)

    Article  Google Scholar 

  20. YUAN, C., DING, Z., WANG, T. J., DUNN, M. L., and QI, H. J. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Materials and Structures, 26(10), 105027 (2017)

    Article  Google Scholar 

  21. SU, J. W., TAO, X., DENG, H., ZHANG, C., JIANG, S., LIN, Y. Y., and LIN, J. 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter, 14(5), 765–772 (2018)

    Article  Google Scholar 

  22. CUI, J., ADAMS, J. G. M., and ZHU, Y. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. Smart Materials and Structures, 27(5), 055009 (2018)

    Article  Google Scholar 

  23. NAFICY, S., GATELY, R., GORKIN, R., XIN, H., and SPINKS, G. M. 4D printing of reversible shape morphing hydrogel structures. Macromolecular Materials and Engineering, 302(1), 1600212 (2017)

    Article  Google Scholar 

  24. GLADMAN, A. S., MATSUMOTO, E. A., NUZZO, R. G., MAHADEVAN, L., and LEWIS, J. A. Biomimetic 4D printing. Nature Materials, 15(4), 413–418 (2016)

    Article  Google Scholar 

  25. WU, Y., HAO, X. P., XIAO, R., LIN, J., WU, Z. L., YIN, J., and QIAN, J. Controllable bending of bi-hydrogel strips with differential swelling. Acta Mechanica Solida Sinica, 32(5), 652–662 (2019)

    Article  Google Scholar 

  26. VAN REES, W. M., VOUGA, E., and MAHADEVAN, L. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences, 114(44), 11597–11602 (2017)

    Article  Google Scholar 

  27. VAN REES, W. M., MATSUMOTO, E. A., GLADMAN, A. S., LEWIS, J. A., and MAHADEVAN, L. Mechanics of biomimetic 4D printed structures. Soft Matter, 14(43), 8771–8779 (2018)

    Article  Google Scholar 

  28. BARTELS, S., BONITO, A., and NOCHETTO, R. H. Bilayer plates: model reduction, Γ-convergent finite element approximation, and discrete gradient flow. Communications on Pure and Applied Mathematics, 70(3), 547–589 (2017)

    Article  MathSciNet  Google Scholar 

  29. BARTELS, S., BONITO, A., MULIANA, A. H., and NOCHETTO, R. H. Modeling and simulation of thermally actuated bilayer plates. Journal of Computational Physics, 354, 512–528 (2018)

    Article  MathSciNet  Google Scholar 

  30. LIU, Z. Y., LIU, H., DUAN, G. F., and TAN, J. R. Folding deformation modeling and simulation of 4D printed bilayer structures considering the thickness ratio. Mathematics and Mechanics of Solids, 25(2), 348–361 (2020)

    Article  MathSciNet  Google Scholar 

  31. VAN MANEN, T., JANBAZ, S., and ZADPOOR, A. A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons, 4(6), 1064–1069 (2017)

    Article  Google Scholar 

  32. ZHENG, S. Y., SHEN, Y. Y., ZHU, F. B., YIN, J., QIAN, J., FU, J. Z., WU, Z. L., and ZHENG, Q. Programmed deformations of 3D-printed tough physical hydrogels with high response speed and large output force. Advanced Functional Materials, 28(37), 1803366 (2018)

    Article  Google Scholar 

  33. WANG, Y. and LI, X. An accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling. Mechanics of Materials, 151, 103628 (2020)

    Article  Google Scholar 

  34. YU, Y. X., LIU, H. L., QIAN, K. R., YANG, H., MCGEHEE, M., GU, J. Z., LUO, D. L., YAO, L. N., and ZHANG, Y. J. Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. Computer-Aided Design, 122, 102817 (2020)

    Article  MathSciNet  Google Scholar 

  35. NOROOZI, R., BODAGHI, M., JAFARI, H., ZOLFAGHARIAN, A., and FOTOUHI, M. Shape-adaptive metastructures with variable bandgap regions by 4D printing. Polymers, 12(3), 519 (2020)

    Article  Google Scholar 

  36. ANG, K. J., RILEY, K. S., FABER, J., and ARRIETA, A. F. Switchable bistability in 3D printed shells with bio-inspired architectures and spatially distributed pre-stress. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers Digital Collection, Texas (2018)

    Google Scholar 

  37. ZENG, S. Y., GAO, Y. C., FENG, Y. X., ZHENG, H., QIU, H., and TAN, J. R. Programming the deformation of a temperature-driven bilayer structure in 4D printing. Smart Materials and Structures, 28(10), 105031 (2019)

    Article  Google Scholar 

  38. FENG, Y. X., XU, J. J., ZENG, S. Y., GAO, Y. C., and TAN, J. R. Controlled helical deformation of programmable bilayer structures: design and fabrication. Smart Materials and Structures, 29(8), 085042 (2020)

    Article  Google Scholar 

  39. TIMOSHENKO, S. Analysis of bi-metal thermostats. Journal of the Optical Society of America, 11(3), 233–255 (1925)

    Article  Google Scholar 

  40. BARTELS, S. Numerical Methods for Nonlinear Partial Differential Equations, Springer, Berlin, 217–257 (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiong Feng.

Additional information

Citation: SONG, J. J., FENG, Y. X., WANG, Y., ZENG, S. Y., HONG, Z. X., QIU, H., and TAN, J. R. Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model. Applied Mathematics and Mechanics (English Edition), 42(11), 1619–1632 (2021) https://doi.org/10.1007/s10483-021-2788-9

Project supported by the National Natural Science Foundation of China (Nos. 52130501 and 52075479) and the National Key R&D Program of China (No. 2018YFB1700804)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Feng, Y., Wang, Y. et al. Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model. Appl. Math. Mech.-Engl. Ed. 42, 1619–1632 (2021). https://doi.org/10.1007/s10483-021-2788-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2788-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation