Skip to main content
Log in

Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen’s nonlocal elasticity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The size effects on heat conduction and elastic deformation are becoming significant along with the miniaturization of the device and wide application of ultrafast lasers. In this work, to better describe the transient responses of nanostructures, a size-dependent thermoelastic model is established based on nonlocal dual-phase-lag (N-DPL) heat conduction and Eringen’s nonlocal elasticity, which is applied to the one-dimensional analysis of a finite bi-layered nanoscale plate under a sudden thermal shock. In the numerical part, a semi-analytical solution is obtained by using the Laplace transform method, upon which the effects of size-dependent characteristic lengths and material properties of each layer on the transient responses are discussed systematically. The results show that the introduction of the elastic nonlocal parameter of Medium 1 reduces the displacement and compressive stress, while the thermal nonlocal parameter of Medium 1 increases the deformation and compressive stress. These findings may be beneficial to the design of nano-sized and multi-layered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EDELSTEIN, A. S. and CAMMARATA, R. C. Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol (1996)

    Book  Google Scholar 

  2. HAMID, M. S., MARYAM, K., and MOHAMADREZA, A. Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: corrections due to finite conductivity, surface energy and nonlocal effect. Composites Part B, 83, 117–133 (2015)

    Article  Google Scholar 

  3. KAMBALI, P. N., NIKHIL, V. S., and PANDEY, A. K. Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Applied Mathematical Modelling, 43, 252–267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. GUO, J. G. and ZHAO, Y. P. The size-dependent elastic properties of nanofilms with surface effects. Journal of Applied Physics, 98(7), 074306 (2005)

    Article  Google Scholar 

  5. LI, X. F., ZHANG, H., and LEE, K. Y. Dependence of Young’s modulus of nanowires on surface effect. International Journal of Mechanical Sciences, 81, 120–125 (2014)

    Article  Google Scholar 

  6. SOBOLEY, S. L. Equations of transfer in non-local media. International Journal of Heat and Mass Transfer, 37(14), 2175–2182 (1994)

    Article  Google Scholar 

  7. CHAN, W. L., AVERBACK, R. S., CAHILL, D. G., and LAGOUTCHEV, A. Dynamics of femtosecond laser-induced melting of silver. Physical Review B, 78, 214107 (2008)

    Article  Google Scholar 

  8. XU, M. T., GUO, J. F., WANG, L. Q., and CHENG, L. Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction. International Journal of Thermal Sciences, 50(5), 825–830 (2011)

    Article  Google Scholar 

  9. JOSEPH, D. D. and PREZIOSI, L. Heat waves. Reviews of Modern Physics, 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. CHESTER, M. Second sound in solids. Physical Review, 131, 2013–2015 (1963)

    Article  Google Scholar 

  11. CATTANEO, C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 247(4), 431–433 (1958)

    MATH  Google Scholar 

  12. VERNOTTE, P. Paradoxes in the continuous theory of the heat conduction. Compte Rendus, 246, 3154–3155 (1958)

    MathSciNet  MATH  Google Scholar 

  13. TZOU, D. Y. A unified field approach for heat conduction from macro-to micro-scales. Journal of Heat Transfer — Transactions of the ASME, 117(1), 8–16 (1995)

    Article  Google Scholar 

  14. TZOU, D. Y. Experimental support for the lagging behavior in heat propagation. Journal of Thermophysics and Heat Transfer, 9(4), 686–693 (1995)

    Article  Google Scholar 

  15. TZOU, D. Y. and GUO, Z. Y. Nonlocal behavior in thermal lagging. International Journal of Thermal Sciences, 49, 1133–1137 (2010)

    Article  Google Scholar 

  16. TZOU, D. Y. Nonlocal behavior in phonon transport. International Journal of Heat and Mass Transfer, 54, 475–481 (2011)

    Article  MATH  Google Scholar 

  17. MARANGANTI, R. and SHARMA, P. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters, 98(19), 195504–1–4 (2007)

    Article  Google Scholar 

  18. FARAJI-OSKOUIE, M., NOROUZZADEH, A., ANSARI, R., and ROUHI, H. Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Applied Mathematics and Mechanics (English Edition), 40(6), 767–782 (2019) https://doi.org/10.1007/s10483-019-2491-9

    Article  MathSciNet  MATH  Google Scholar 

  19. AIFANTIS, E. Strain gradient interpretation of size effects. International Journal of Fracture, 95, 299–314 (1999)

    Article  Google Scholar 

  20. SAHMANI, S. and FATTAHI, A. M. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Applied Mathematics and Mechanics (English Edition), 39(4), 561–580 (2018) https://doi.org/10.1007/s10483-018-2321-8

    Article  MathSciNet  MATH  Google Scholar 

  21. HADJESFANDIARI, A. R. and DARGUSH, G. F. Couple stress theory for solids. International Journal of Solids and Structures, 48, 2496–2510 (2011)

    Article  Google Scholar 

  22. YANG, F., CHONG, A., LAM, D., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  23. ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  24. POLIZZOTTO, C. Stress gradient versus strain gradient constitutive models within elasticity. International Journal of Solids and Structures, 51(9), 1809–1818 (2014)

    Article  Google Scholar 

  25. TAUPIN, V., GBEMOU, K., FRESSENGEAS, C., and CAPOLUNGO, L. Nonlocal elasticity tensors in dislocation and disclination cores. Journal of the Mechanics and Physics of Solids, 100, 62–84 (2017)

    Article  MathSciNet  Google Scholar 

  26. CHANG, D. M. and WANG, B. L. Surface thermal shock cracking of a semi-infinite medium: a nonlocal analysis. Acta Mechanica, 226(12), 4139–4147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. GUVEN, U. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 36(10), 1305–1318 (2015) https://doi.org/10.1007/s10483-015-1985-9

    Article  MathSciNet  MATH  Google Scholar 

  28. YU, Y. J., TIAN, X. G., and XIONG, Q. L. Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics A/Solids, 60, 238–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. YANG, W. Z. and CHEN, Z. T. Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis. International Journal of Heat and Mass Transfer, 156, 119752 (2020)

    Article  Google Scholar 

  30. GUYER, R. A. and KRUMHANSL, J. A. Solution of the linearized phonon boltzmann equation. Physical Review, 148, 766–778 (1966)

    Article  Google Scholar 

  31. GUYER, R. A. and KRUMHANSL, J. A. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Physical Review, 148, 778–788 (1966)

    Article  Google Scholar 

  32. CAO, B. Y. and GUO, Z. Y. Equation of motion of a phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 102(5), 053503 (2007)

    Article  Google Scholar 

  33. GUO, Z. Y. and CAO, B. Y. A general heat conduction law based on the concept of motion of thermal mass. Acta Physica Sinica, 57(7), 4273–4281 (2008)

    Article  Google Scholar 

  34. BRORSON, S. D., FUJIMOTO, J. G., and IPPEN, E. P. Femtosecond electronic heat-transport dynamics in thin gold films. Physical Review Letters, 59, 1962–1965 (1987)

    Article  Google Scholar 

  35. BRANCIK, L. Programs for fast numerical inversion of Laplace transforms in MATLAB language environment. Proceedings of the 7th Conference MATLAB’99, Czech Republic, Prague, 27–39 (1999)

  36. XIONG, Q. L. and TIAN, X. G. Modeling of non-equilibrium deformation in a double-layered thin film during ultrashort laser heating. Journal of Thermal Stresses, 36, 387–404 (2013)

    Article  Google Scholar 

  37. QIU, T. Q., JUHASZ, T., SUAREZ, C., BRON, W. E., and TIEN, C. L. Femtosecond laser heating of multi-layered metals II, experiments. International Journal of Heat and Mass Transfer, 37(17), 2799–2808 (1994)

    Article  Google Scholar 

  38. XUE, Z. N., YU, Y. J., and TIAN, X. G. Transient responses of bi-layered structure based on generalized thermoelasticity: interfacial conditions. International Journal of Mechanical Sciences, 99, 179–186 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12002391 and 11972375), the China Postdoctoral Science Foundation Funded Project (No. 2019TQ0355), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14010303), and the Open Projects of State Key Laboratory for Strength and Vibration of Mechanical Structures (No. SV2020-KF-12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Cao, G. & Liu, J. Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen’s nonlocal elasticity. Appl. Math. Mech.-Engl. Ed. 42, 1–16 (2021). https://doi.org/10.1007/s10483-021-2692-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2692-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation