Skip to main content

Advertisement

Log in

Thermoelastic damping in micro/nano-plate vibrations: 3D modeling using modified couple stress theory and the Moore–Gibson–Thompson equation

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper introduces a size-dependent model for evaluating thermoelastic damping (TED) in small-scaled rectangular plates, incorporating three-dimensional (3D) heat transfer. Utilizing the modified couple stress theory (MCST) and Moore–Gibson–Thompson (MGT) heat equation, we enhance the thermomechanical analysis accuracy in micro/nano-structures. The model employs MCST to derive size-dependent constitutive relations for rectangular plates, coupled with the MGT model for formulating the 3D heat conduction equation. This approach facilitates the analysis of the 3D temperature field and aids in defining TED using the energy loss method. Consequently, an analytical expression is developed to predict 3D TED in rectangular plate resonators, integrating characteristic MCST length and nonclassical MGT parameters. Comparative analyses with existing studies and a series of simulated numerical results are presented. These simulations primarily focus on contrasting the 3D model with conventional 1D models and examining the effects of implementing MCST and MGT models. Findings reveal that the proposed formulation significantly alters outcomes for very small and relatively thick plates compared to simpler models. This advancement in modeling provides a more precise understanding of TED in micro/nano-plate structures, offering vital insights for their optimal design and application in advanced technological fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Akbarzadeh Khorshidi, M.: Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory. Mech. Time-Depend. Mater. 25(2), 265–278 (2021)

    Article  ADS  Google Scholar 

  • Al-Bahrani, M., AbdulAmeer, S.A., Yasin, Y., Alanssari, A.I., Hameed, A.S., Sulaiman, J.M.A., … Alam, M.M.: Couple stress-based thermoelastic damping in microrings with rectangular cross section according to Moore–Gibson–Thompson heat equation. Arch. Civ. Mech. Eng. 23(3), 151 (2023)

    Article  Google Scholar 

  • Al-Hawary, S.I.S., Huamán-Romaní, Y.L., Sharma, M.K., Kuaquira-Huallpa, F., Pant, R., Romero-Parra, R.M., … Zearah, S.A.: Non-Fourier thermoelastic damping in small-sized ring resonators with circular cross section according to Moore–Gibson–Thompson generalized thermoelasticity theory. Arch. Appl. Mech. 1–23 (2024)

  • Atta, D., Abouelregal, A.E., Sedighi, H.M., Alharb, R.A.: Thermodiffusion interactions in a homogeneous spherical shell based on the modified Moore–Gibson–Thompson theory with two time delays. Mech. Time-Depend. Mater. 1–22 (2023)

  • Aydogdu, M.: Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012)

    Article  Google Scholar 

  • Borjalilou, V., Asghari, M.: Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J. Therm. Stresses 43(4), 401–420 (2020)

    Article  Google Scholar 

  • Borjalilou, V., Asghari, M.: Size-dependent analysis of thermoelastic damping in electrically actuated microbeams. Mech. Adv. Mat. Struct. 28(9), 952–962 (2021)

    Article  CAS  Google Scholar 

  • Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. Stresses 42(7), 801–814 (2019)

    Article  Google Scholar 

  • Borjalilou, V., Asghari, M., Taati, E.: Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J. Vib. Control 26(11–12), 1042–1053 (2020)

    Article  MathSciNet  Google Scholar 

  • Civalek, Ö., Dastjerdi, S., Akbaş, Ş.D., Akgöz, B.: Vibration analysis of carbon nanotube-reinforced composite microbeams. Math. Methods Appl. Sci. (2021)

  • Dastjerdi, S., Abbasi, M.: A new approach for time-dependent response of viscoelastic graphene sheets embedded in visco-Pasternak foundation based on nonlocal FSDT and MHSDT theories. Mech. Time-Depend. Mater. 24, 329–361 (2020)

    Article  ADS  CAS  Google Scholar 

  • Ding, H., Chen, L.Q.: Shock isolation of an orthogonal six-DOFs platform with high-static-low-dynamic stiffness. J. Appl. Mech. 90, 111004 (2023)

    Article  Google Scholar 

  • Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  • Fang, Y., Li, P., Zhou, H., Zuo, W.: Thermoelastic damping in rectangular microplate resonators with three-dimensional heat conduction. Int. J. Mech. Sci. 133, 578–589 (2017)

    Article  Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  CAS  Google Scholar 

  • Ge, Y., Sarkar, A.: Thermoelastic damping in vibrations of small-scaled rings with rectangular cross-section by considering size effect on both structural and thermal domains. Int. J. Struct. Stab. Dyn. 23(03), 2350026 (2023)

    Article  MathSciNet  Google Scholar 

  • Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of doubly curved shallow microshells. Nonlinear Dyn. 92, 803–814 (2018)

    Article  Google Scholar 

  • Ghayesh, M.H., Farokhi, H., Farajpour, A.: Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin-Walled Struct. 150, 106117 (2020)

    Article  Google Scholar 

  • Green, A.E., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  • Grover, D., Seth, R.K.: Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators. Mech. Time-Depend. Mater. 23, 119–132 (2019)

    Article  ADS  Google Scholar 

  • Gu, B., Shi, S., Ma, Y., He, T.: Thermoelastic damping analysis in nanobeam resonators considering thermal relaxation and surface effect based on the nonlocal strain gradient theory. J. Therm. Stresses 45(12), 974–992 (2022)

    Article  Google Scholar 

  • Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  • Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766 (1966)

    Article  ADS  CAS  Google Scholar 

  • Hai, L., Kim, D.J.: Nonlocal dual-phase-lag thermoelastic damping in small-sized circular cross-sectional ring resonators. Mech. Adv. Mat. Struct. 1–17 (2023)

  • Huang, Y., Karami, B., Shahsavari, D., Tounsi, A.: Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch. Civ. Mech. Eng. 21(4), 139 (2021)

    Article  Google Scholar 

  • Jalil, A.T., Karim, N., Ruhaima, A.A.K., Sulaiman, J.M.A., Hameed, A.S., Abed, A.S., … Rayani, Y.: Analytical Model for Thermoelastic Damping in in-Plane Vibrations of Circular Cross-Sectional Micro/Nanorings with Dual-Phase-Lag Heat Conduction. J. Vib. Control Eng. Tehnol. 1–14 (2023)

  • Jalil, A.T., Saleh, Z.M., Imran, A.F., Yasin, Y., Ruhaima, A.A.K., Gatea, M.A., Esmaeili, S.: A size-dependent generalized thermoelasticity theory for thermoelastic damping in vibrations of nanobeam resonators. Int. J. Struct. Stab. Dyn. 23, 2350133 (2023)

    Article  MathSciNet  Google Scholar 

  • Karamanli, A., Vo, T.P., Civalek, O.: Higher order finite element models for transient analysis of strain gradient functionally graded microplates. Eur. J. Mech. A, Solids 99, 104933 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Karimzadeh, A., Ahmadian, M.T., Firoozbakhsh, K., Rahaeifard, M.: Vibrational analysis of size-dependent rotating micro-rings. Int. J. Struct. Stab. Dyn. 17(09), 1771012 (2017)

    Article  Google Scholar 

  • Kaur, I., Singh, K.: Study of a time-harmonic load on a Kirchhoff–Love plate with modified thermoelasticity theory using higher-order memory-dependent derivatives. Mech. Time-Depend. Mater. 1–15 (2023)

  • Kharnoob, M.M., Cepeda, L.C., Jácome, E., Choto, S., Abdulhussien Alazbjee, A., Sapaev, I.B., … Alsalamy, A.: Analysis of thermoelastic damping in a microbeam following a modified strain gradient theory and the Moore-Gibson-Thompson heat equation. Mech. Time-Depend. Mater. 1–27 (2023)

  • Kim, J.H., Kim, J.H.: Phase-lagging of the thermoelastic dissipation for a tubular shell model. Int. J. Mech. Sci. 163, 105094 (2019)

    Article  Google Scholar 

  • Kim, J.H., Kim, J.H.: Phase-lagging of the thermoelastic dissipation for a tubular shell model. Int. J. Mech. Sci. 163, 105094 (2019)

    Article  Google Scholar 

  • Kumar, R., Devi, S., Sharma, V.: Deformation due to expanding ring load in modified couple stress thermoelastic diffusion in time and frequency domain. Mech. Adv. Mat. Struct. 24(8), 685–697 (2017)

    Article  Google Scholar 

  • Kumar, R., Tiwari, R., Kumar, R.: Significance of memory-dependent derivative approach for the analysis of thermoelastic damping in micromechanical resonators. Mech. Time-Depend. Mater. 26(1), 101–118 (2022)

    Article  ADS  Google Scholar 

  • Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  Google Scholar 

  • Li, F., Esmaeili, S.: On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur. Phys. J. Plus 136(2), 1–17 (2021)

    Article  CAS  Google Scholar 

  • Li, M., Cai, Y., Bao, L., Fan, R., Zhang, H., Wang, H., Borjalilou, V.: Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Arch. Civ. Mech. Eng. 22, 1–16 (2022)

    Google Scholar 

  • Li, M., Cai, Y., Fan, R., Wang, H., Borjalilou, V.: Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 174, 109142 (2022)

    Article  Google Scholar 

  • Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  ADS  CAS  Google Scholar 

  • Lim, C.W., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, D., Geng, T., Wang, H., Esmaeili, S.: Analytical solution for thermoelastic oscillations of nonlocal strain gradient nanobeams with dual-phase-lag heat conduction. Mech. Based Des. Struct. Mach. 51(9), 4946–4976 (2023)

    Article  Google Scholar 

  • Liu, H., Sahmani, S., Safaei, B.: Nonlinear buckling mode transition analysis in nonlocal couple stress-based stability of FG piezoelectric nanoshells under thermo-electromechanical load. Mech. Adv. Mat. Struct. 30(16), 3385–3405 (2023)

    Article  Google Scholar 

  • Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  Google Scholar 

  • Lu, Z., Brennan, M.J., Yang, T., Li, X., Liu, Z.: An investigation of a two-stage nonlinear vibration isolation system. J. Sound Vib. 332(6), 1456–1464 (2013)

    Article  ADS  Google Scholar 

  • Lu, Y., Stegmaier, M., Nukala, P., Giambra, M.A., Ferrari, S., Busacca, A., … Agarwal, R.: Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17(1), 150–155 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lu, Z., Brennan, M., Ding, H., Chen, L.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China, Technol. Sci. 62, 1103–1110 (2019)

    Article  ADS  Google Scholar 

  • Madelatparvar, M., Hosseini, M.S., Zhang, C.: Polyurea micro-/nano-capsule applications in construction industry: a review. Nanotechnol. Rev. 12(1), 20220516 (2023)

    Article  CAS  Google Scholar 

  • Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  Google Scholar 

  • Mindlin, R.D., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  • Panahi, R., Asghari, M., Borjalilou, V.: Nonlinear forced vibration analysis of micro-rotating shaft–disk systems through a formulation based on the nonlocal strain gradient theory. Arch. Civ. Mech. Eng. 23(2), 85 (2023)

    Article  Google Scholar 

  • Peng, W., Tian, L., He, T.: Dual-phase-lag thermoviscoelastic analysis of a size-dependent microplate based on a fractional-order heat-conduction and strain model. Mech. Time-Depend. Mater. 1–22 (2022)

  • Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  • Rao, R., Sahmani, S., Safaei, B.: Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch. Civ. Mech. Eng. 21(3), 98 (2021)

    Article  Google Scholar 

  • Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  • Sarparast, H., Alibeigloo, A., Borjalilou, V., Koochakianfard, O.: Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Arch. Civ. Mech. Eng. 22(4), 172 (2022)

    Article  Google Scholar 

  • Shao, D., Xu, L., Li, P., Zhou, H.: Two-dimensional thermoelastic damping models for circular micro/nanoplate resonators with nonlocal dual-phase-lagging effect of heat conduction. Thin-Walled Struct. 190, 110972 (2023)

    Article  Google Scholar 

  • Shen, Z., Dong, R., Li, J., Su, Y., Long, X.: Determination of gradient residual stress for elastoplastic materials by nanoindentation. J. Manuf. Process. 109, 359–366 (2024)

    Article  Google Scholar 

  • Singh, B., Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in micro-beam resonators in the frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories. Waves Random Complex Media 1–18 (2021)

  • Singh, B., Kumar, H., Mukhopadhyay, S.: Analysis of size effects on thermoelastic damping in the Kirchhoff’s plate resonator under Moore–Gibson–Thompson thermoelasticity. Thin-Walled Struct. 180, 109793 (2022)

    Article  Google Scholar 

  • Sobhy, M., Zenkour, A.M.: The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Mat. Struct. 27(7), 525–538 (2020)

    Article  Google Scholar 

  • Tiwari, R., Kumar, R., Abouelregal, A.E.: Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags. Mech. Time-Depend. Mater. 1–17 (2021)

  • Tiwari, R., Abouelregal, A.E., Shivay, O.N., Megahid, S.F.: Thermoelastic vibrations in electro-mechanical resonators based on rotating microbeams exposed to laser heat under generalized thermoelasticity with three relaxation times. Mech. Time-Depend. Mater. 1–25 (2022)

  • Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Article  CAS  Google Scholar 

  • Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49(7), 1133–1137 (2010)

    Article  Google Scholar 

  • Weng, L., Xu, F., Chen, X.: Three-dimensional analysis of thermoelastic damping in couple stress-based rectangular plates with nonlocal dual-phase-lag heat conduction. Eur. J. Mech. A, Solids 105, 105223 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  Google Scholar 

  • Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H., Shu, Y.: Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Appl. Electron. Mater. 4(9), 4659–4667 (2022)

    Article  CAS  Google Scholar 

  • Yang, L., Li, P., Gao, Q., Gao, T.: Thermoelastic damping in rectangular micro/nanoplate resonators by considering three-dimensional heat conduction and modified couple stress theory. J. Therm. Stresses 45(11), 843–864 (2022)

    Article  Google Scholar 

  • Yang, L., Ye, M., Huang, Y., Dong, J.: Study on mechanical properties of displacement-amplified mild steel bar joint damper. Iran. J. Sci. Technol. Trans. Civil Eng. 1–14 (2023)

  • Yang, T., Xiang, G., Cai, J., Wang, L., Lin, X., Wang, J., Zhou, G.: Five-DOF nonlinear tribo-dynamic analysis for coupled bearings during start-up. Int. J. Mech. Sci. 269, 109068 (2024)

    Article  Google Scholar 

  • Youssef, H.M., El-Bary, A.A.: The reference temperature dependence of Young’s modulus of two-temperature thermoelastic damping of gold nano-beam. Mech. Time-Depend. Mater. 22(4), 435–445 (2018)

    Article  ADS  CAS  Google Scholar 

  • Youssef, H.M., El-Bary, A.A.: Influence of the mechanical damage on vibration of a viscothermoelastic circular microplate resonator based on dual-phase-lag heat conduction. Mech. Time-Depend. Mater. 25(3), 473–493 (2021)

    Article  ADS  CAS  Google Scholar 

  • Yu, J.N., She, C., Xu, Y.P., Esmaeili, S.: On size-dependent generalized thermoelasticity of nanobeams. Waves Random Complex Media 1–30 (2022)

  • Yue, X., Yue, X., Borjalilou, V.: Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch. Civ. Mech. Eng. 21(3), 124 (2021)

    Article  Google Scholar 

  • Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  ADS  Google Scholar 

  • Zhang, M., Jiang, X., Arefi, M.: Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching. Eur. Phys. J. Plus 138(3), 227 (2023)

    Article  Google Scholar 

  • Zheng, F., Lu, Y., Ebrahimi-Mamaghani, A.: Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 32(3), 1385–1423 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Zheng, L., Wu, Z., Wen, S., Li, F.: Thermoelastic damping in cylindrical shells with arbitrary boundaries. Int. J. Heat Mass Transf. 206, 123948 (2023)

    Article  Google Scholar 

  • Zhou, H., Li, P.: Thermoelastic damping in micro-and nanobeam resonators with non-Fourier heat conduction. IEEE Sens. J. 17(21), 6966–6977 (2017)

    Article  ADS  CAS  Google Scholar 

  • Zhou, H., Shao, D., Song, X., Li, P.: Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction. Int. J. Heat Mass Transf. 196, 123271 (2022)

    Article  CAS  Google Scholar 

  • Zhu, X., Li, L.: Closed form solution for a nonlocal strain gradient rod in tension. Int. J. Eng. Sci. 119, 16–28 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Researchers Supporting Project number (RSPD2024R993), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Khalid Mujasam Batoo did Project administration and Software. Shaymaa Abed Hussein did Writing and Visualization. Ehab Essam Aziz performed Investigation and Software. Manal Morad Karim conducted Formal analysis and Writing. Ayadh Al-khalidi did Writing and Visualization. Ahmed Ahmed Ibrahim carried out Visualization and Validation. Bouchaib Zazoum did Writing and Visualization. Montather F. Ramadan performed Investigation and Software. Jamal K. Abbas did Writing and Data curation. Ahmed Elawady did Writing and Software. Ghassan Fadhil Smaisim carried out Supervision and Validation.

Corresponding author

Correspondence to Ghassan Fadhil Smaisim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mujasam Batoo, K., Hussein, S.A., Aziz, E.E. et al. Thermoelastic damping in micro/nano-plate vibrations: 3D modeling using modified couple stress theory and the Moore–Gibson–Thompson equation. Mech Time-Depend Mater (2024). https://doi.org/10.1007/s11043-024-09680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-024-09680-w

Keywords

Navigation